Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15–25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.
According to the conventional wisdom, programmed death protein 1 ligand (PD-L1)-mediated immunosuppression was based on the physical contact between tumor cells and T cells in the tumor microenvironment. Recent studies demonstrated that PD-L1 was also highly expressed on the surface of tumor cell-derived small extracellular vesicles (sEVs). PD-L1 on sEVs, which could also directly bind to PD-1 on T cells, has a vital function in immunosuppression and immunotherapy resistance. Due to the heterogeneity and dynamic changes of PD-L1 expression on tumor cells, developing sEV PD-L1 as a predictive biomarker for the clinical responses to immunotherapy could be an attractive option. In this review, we summarized and discussed the latest researches and advancements on sEV PD-L1, including the biogenesis and secretion mechanisms, isolation and detection strategies, as well as the biological functions of sEV PD-L1. In the meantime, we highlighted the application potential of sEV PD-L1 as diagnostic and prognostic markers in tumor, especially for predicting the clinical responses to anti-PD-1/PD-L1 immunotherapies. In particular, with the gradual deepening of the studies, challenges and problems regarding the further understanding and application of sEV PD-L1 have begun to emerge. Based on the current research status, we summarized the potential challenges and possible solutions, and prospected several key directions for future studies of sEV PD-L1. Collectively, by highlighting the important knowns and unknowns of sEV PD-L1, our present review would help to light the way forward for the field of sEV PD-L1 and to avoid unnecessary blindness and detours.
Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications.
Small extracellular vesicles (sEVs) are heterogeneous membrane-bound vesicles that carry numerous bioactive molecules. Studies have reported that sEVs carrying PD-L1 on the surface could contribute to immunosuppression; however, the precise mechanisms are unclear. To fully dissect their mode of action, it requires qualified methods to specifically isolate natural PD-L1-positive sEVs from heterogeneous sEVs. This study reported an aptamer-assisted capture-and-release strategy for traceless isolation of PD-L1-positive sEVs. The PD-L1 aptamer-anchored magnetic microspheres enable the specific capture of PD-L1-positive sEVs. The traceless release of captured PD-L1-positive sEVs was triggered by competition of complementary oligonucleotides, endowing the obtained label-free PD-L1-positive sEVs with natural properties. Benefited from this traceless isolation strategy, the distinct molecule profiles in adhesion and immuno-regulation between PD-L1-positive and PD-L1-negative sEVs were revealed. Compared to PD-L1-negative sEVs, PD-L1-positive sEVs were much more concentrated in cadherin binding, accompanied by increased adhesion to lymphatic endothelial cells and T cells but decreased adhesion to the extracellular matrix. Moreover, PD-L1-positive sEVs could transfer their enriched immunosuppressive “synapse”-related proteins to antigen-presenting cells, thereby inducing a tolerogenic-like phenotype. In summary, the present work dissects the subpopulation signature and action mode of PD-L1-positive sEVs for the first time and provides a general approach to the traceless isolation of sEV subpopulations.
Extracellular vesicles (EVs) are cell‐derived membrane‐enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs’ behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell‐derived small EVs (T‐sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin‐mediated endocytosis by ECs, T‐sEVs are transported to the perinuclear region in a typical three‐stage pattern. Importantly, T‐sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T‐sEV transportation and cargo‐release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD‐based SPT technique will help uncover more secrets of sEV‐mediated cell–cell communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.