Phoborhodopsin (pR; also called sensory rhodopsin II, SRII) is a photoreceptor of negative phototaxis of halobacteria. The studies of photochemical properties of this pigment are not many because the amount of the pigment is small and the stability is low. Recently an expression system of phoborhodopsin from Halobacterium salinarum (called salinarum phoborhodopsin, spR; also HsSRII) in Escherichia coli and purification method has been developed (Mironova et al. [2005] FEBS Lett., 579, 3147-3151), which enables detailed studies on the photochemical properties of spR. In the present work, the photoreaction cycle of E. coli-expressed spR was studied by low-temperature spectroscopy and flash photolysis. Formations of K-, M-, O-like intermediates and P480 were reconfirmed as reported previously. New findings are as follows. (1) The K-like intermediate (P500) was a mixture of two photoproducts. (2) Formation of L-like intermediate (P482) was observed by low-temperature spectroscopy and flash photolysis at room temperature. (3) On long irradiation of spR at 20 degrees C, formation of a new photoproduct P370 was observed and it decayed to the original spR in the dark with a decay half time of 190 min. Based on these results the similarities and dissimilarities between spR and ppR are discussed.
The enantioselective Diels-Alder reaction of 1,2-dihydropyridines with aldehydes using an easily prepared optically active β-amino alcohol catalyst was found to provide optically active isoquinuclidines, an efficient synthetic intermediate of pharmaceutically important compounds such as oseltamivir phosphate, with a satisfactory chemical yield and enantioselectivity (up to 96%, up to 98% ee). In addition, the obtained highly optically pure isoquinuclidine was easily converted to an optically active piperidine having four successive carbon centers.
Microbial rhodopsins are photoactive proteins that use a retinal molecule as the photoactive center. Because of structural simplicity and functional diversity, microbial rhodopsins have been an excellent model system for structural biology. In this study, a halophilic archaea that has three microbial rhodopsin-type genes in its genome was isolated from Ejinoor salt lake in Inner Mongolia of China. A sequence of 16S rRNA showed that the strain belongs to Halorubrum genus and named Halorubrum sp. ejinoor (He). The translated amino acid sequences of its microbial rhodopsin-type genes suggest that they are homologs of archaerhodopsin (HeAR), halorhodopsin (HeHR) and sensory rhodopsin II (HeSRII). The mRNAs of three types of genes were detected by RT-PCR and their amounts were investigated by Real-Time RT-PCR. The amount of mRNA of HeSRII was the smallest and the amounts of of HeAR and HeHR were 30 times and 10 times greater than that of HeSRII. The results of light-induced pH changes suggested the presence of a light-driven proton pump and a light-driven chloride ion pump in the membrane vesicles of He. Flash induced absorbance changes of the He membrane fraction indicated that HeAR and HeHR are photoactive and undergo their own photocycles. This study revealed that three microbial rhodopsin-type genes are all expressed in the strain and at least two of them, HeAR and HeHR, are photochemically and physiologically active like BR and HR of Halobacterium salinarum, respectively. To our knowledge, this is the first report of physiological activity of HR-homolog of Halorubrum species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.