Purpose While multikinase inhibitors with RET activity are active in RET-rearranged thyroid and lung cancers, objective response rates are relatively low and toxicity can be substantial. The development of novel RET inhibitors with improved potency and/or reduced toxicity is thus an unmet need. RXDX-105 is a small molecule kinase inhibitor that potently inhibits RET. The purpose of the preclinical and clinical studies was to evaluate the potential of RXDX-105 as an effective therapy for cancers driven by RET alterations. Experimental design The RET-inhibitory activity of RXDX-105 was assessed by biochemical and cellular assays, followed by in vivo tumor growth inhibition studies in cell line– and patient-derived xenograft models. Antitumor activity in patients was assessed by imaging and Response Evaluation Criteria in Solid Tumors (RECIST). Results Biochemically, RXDX-105 inhibited wild-type RET, CCDC6-RET, NCOA4-RET, PRKAR1A-RET, and RET M918T with low to subnanomolar activity while sparing VEGFR2/KDR and VEGFR1/FLT. RXDX-105 treatment resulted in dose-dependent inhibition of proliferation of CCDC6-RET–rearranged and RET C634W-mutant cell lines and inhibition of downstream signaling pathways. Significant tumor growth inhibition in CCDC6-RET, NCOA4-RET, and KIF5B-RET–containing xenografts was observed, with the concomitant inhibition of p-ERK, p-AKT, and p-PLCγ. Additionally, a patient with advanced RET-rearranged lung cancer had a rapid and sustained response to RXDX-105 in both intracranial and extracranial disease. Conclusions These data support the inclusion of patients bearing RET alterations in ongoing and future molecularly enriched clinical trials to explore RXDX-105 efficacy across a variety of tumor types.
The translation of nonclinical oncology studies is a subject of continuous debate. We propose that translational oncology studies need to optimize both pharmacokinetic (drug exposure) and pharmacodynamic (xenograft model) aspects. While improvements in pharmacodynamic translatability can be obtained by choosing cell lines or patient-derived xenograft models closer to the clinical indication, significant ambiguity and variability exists when optimizing the pharmacokinetic translation of small molecule and biotherapeutic agents. In this work, we propose a pharmacokinetic-based strategy to select nonclinical doses for approved drug molecules. We define a clinically relevant dose (CRD) as the dosing regimen in mice that most closely approximates the relevant pharmacokinetic metric in humans. Such metrics include area under the time-concentration curve and maximal or minimal concentrations within the dosing interval. The methodology is applied to six drugs, including targeted agents and chemotherapeutics, small and large molecules (erlotinib, dasatinib, vismodegib, trastuzumab, irinotecan, and capecitabine). The resulting efficacy response at the CRD is compared with clinical responses. We conclude that nonclinical studies designed with the appropriate CRDs of approved drug molecules will maximize the translatability of efficacy results, which is critical when testing approved and investigational agents in combination. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.