Metabolic reprogramming endows cancer cells with the ability to adjust metabolic pathways to support heterogeneously biological processes. However, it is not known how the reprogrammed activities are implemented during differentiation of cancer stem cells (CSCs). In this study, we demonstrated that liver CSCs relied on the enhanced mitochondrial function to maintain stemness properties, which is different from aerobic glycolysis playing main roles in the differentiated non-CSCs. We found that liver CSCs exhibit increased mitochondrial respiratory capacity and that complex-I of mitochondria was necessary for stemness properties of liver CSCs through regulation of mitochondrial respiration. Bioinformatics analysis reveals that mitochondrial ribosomal protein S5 (MRPS5) is closely related with the function of complex-I. Further experiments confirmed that MRPS5 promoted the production of nicotinamide adenine dinucleotide (NAD + ), which is necessary for enhanced mitochondrial function in liver CSCs. MRPS5 played a critical role for liver CSCs to maintain stemness properties and to participate in tumor progression. Mechanistically, the acetylation status of MRPS5 is directly regulated by NAD + dependent deacetylase sirtuin-1 (SIRT1), which is abundant in liverCSCs and decreased during differentiation. Deacetylated MRPS5 locates in mitochondria to promote the function complex-I and the generation of NAD + to enhance mitochondrial respiration. Conversely, the acetylated MRPS5 gathered in nuclei leads to increased expression of glycolytic proteins and promotion of the Warburg Effect. Therefore, liver CSCs transform mitochondrial-dependent energy supply to a Warburg phenotype by the dual function of MRPS5. Clinical analysis of SIRT1 and MRPS5 expression in tumor tissues showed the SIRT1 High /Cytoplasmic-MRPS5 High profile was associated with patients with hepatocellular carcinoma with poor prognosis. Conclusion: SIRT1/MRPS5 axis participates in metabolic reprogramming to facilitate tumor progression and may serve as a promising therapeutic target of liver cancer. (Hepatology 2019;70:1197-1213).
remains the major concern of anti-CD19 CAR-T cell therapy. One mechanism for relapse is the development of humoral and/or cellular immune responses against some specific epitopes of scFv in the CAR structure, which are derived from a murine antibody. In this investigator-initiated trial, we developed a humanized anti-CD19 scFv CAR-T (hCAR-T) cells and infused these cells to patients with r/r ALL. Sustained B cell aplasia and long-term persistence of hCAR-T cells were observed in these patients. Moreover, four patients with high tumor burden and rapidly progressive disease experienced grade 3-4 of cytokine release syndrome (CRS). These severe CRSs were successfully controlled by tocilizumab, glucocorticoid and plasma exchange (PE). Our data provide a potential method to reduce the relapse rate for patients accepting CAR-T cell therapy.Research.
Background Leukemia stem cells (LSCs) are responsible for the initiation, progression, and relapse of acute myeloid leukemia (AML). Therefore, a therapeutic strategy targeting LSCs is a potential approach to eradicate AML. In this study, we aimed to identify LSC-specific surface markers and uncover the underlying mechanism of AML LSCs. Methods Microarray gene expression data were used to investigate candidate AML-LSC-specific markers. CD9 expression in AML cell lines, patients with AML, and normal donors was evaluated by flow cytometry (FC). The biological characteristics of CD9-positive (CD9+) cells were analyzed by in vitro proliferation, chemotherapeutic drug resistance, migration, and in vivo xenotransplantation assays. The molecular mechanism involved in CD9+ cell function was investigated by gene expression profiling. The effects of alpha-2-macroglobulin (A2M) on CD9+ cells were analyzed with regard to proliferation, drug resistance, and migration. Results CD9, a cell surface protein, was specifically expressed on AML LSCs but barely detected on normal hematopoietic stem cells (HSCs). CD9+ cells exhibit more resistance to chemotherapy drugs and higher migration potential than do CD9-negative (CD9−) cells. More importantly, CD9+ cells possess the ability to reconstitute human AML in immunocompromised mice and promote leukemia growth, suggesting that CD9+ cells define the LSC population. Furthermore, we identified that A2M plays a crucial role in maintaining CD9+ LSC stemness. Knockdown of A2M impairs drug resistance and migration of CD9+ cells. Conclusion Our findings suggest that CD9 is a new biomarker of AML LSCs and is a promising therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.