Research on material properties under extreme conditions plays a great role in material science and high energy physics. Condensed liner accelerated by powerful pulse facilities has been used to compress the target liner. The motion of liner implosion driven by a pulse of current of several microseconds rise time and 70~90 MA has been numerically studied in this paper. Liners state and velocities are discussed. Results of 2D magnetohydrodynamics liner implosion computations are presented in order to study the development of interface instability.
It is found that the samples usually melt and even gasify in the magnetic driven high-speed flying plate experiments, which phenomenon goes against the investigation on materials’ equation of state (EOS). To understand this phenomenon, the whole process of magnetic driven flying plate experiment is simulated by the magnetohydrodynamic code MDSC. The ablation mechanism of magnetic driven flying plate is analyzed through the control of thermal conduction coefficient, and resistivity coefficient which is related to the magnetic diffusion velocity, in the energy conversing equation. Inside the flying plate the velocity of stress wave is much higher than that of magnetic diffusion, and hence the current goes into the inside of sample no early than the stress wave, so the magnetic diffusion doesn’t play an important role in the first stage of flyer free surface velocity history. The thermal conduction doesn’t influence the whole free surface velocity history of the flying plate much, while the Ohmic heating has a big effect on it, without which more than 20% error will be produced. The energy transportation in the flying plate medium is mainly caused by the Ohmic heating from magnetic diffusion. Besides, the relationship between the magnetic diffusion and temperature of flying plate is also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.