SUMMARYCorneas of diabetic patients have abnormal healing and epithelial adhesion, which may be due to alterations of the corneal extracellular matrix (ECM) and basement membrane (BM). To identify such alterations, various ECM and BM components and integrin receptors were studied by immunofluorescence on sections of normal and diabetic human corneas. Age-matched corneas from 15 normal subjects, 10 diabetics without diabetic retinopathy (DR), and 12 diabetics with DR were used. In DR corneas, the composition of the central epithelial BM was markedly altered, compared to normal or non-DR diabetic corneas. In most cases the staining for entactin/nidogen and for chains of laminin-1 ( ␣1 1 ␥1) and laminin-10 ( ␣5 1 ␥1) was very weak, discontinuous, or absent over large areas. Other BM components displayed less frequent changes. The staining for ␣3 1 (VLA-3) laminin binding integrin was also weak and discontinuous in DR corneal epithelium. Components of stromal ECM remained unchanged even in DR corneas. Therefore, distinct changes were identified in the composition of the epithelial BM in DR corneas. They may be due to increased degradation or decreased synthesis of BM components and related integrins. These alterations may directly contribute to the epithelial adhesion and wound healing abnormalities found in diabetic corneas. (J Histochem Cytochem 46:1033-1041, 1998)
We have previously described decreased immunostaining of nidogen-1/entactin; laminin chains alpha1, alpha5, beta1,gamma1; and epithelial integrin alpha3beta1 in human diabetic retinopathy (DR) corneas. Here, using 142 human corneas, we tested whether these alterations might be caused by decreased gene expression levels or increased degradation. By semiquantitative reverse transcription-polymerase chain reaction, gene expression levels of the alpha1, alpha5, and beta1 laminin chains; nidogen-1/entactin; integrin alpha3 and beta1 chains in diabetic and DR corneal epithelium were similar to normal. Thus, the observed basement membrane and integrin changes were unlikely to occur because of a decreased synthesis. mRNA levels of matrix metalloproteinase-10 (MMP-10/stromelysin-2) were significantly elevated in DR corneal epithelium and stroma, and of MMP-3/stromelysin-1, in DR corneal stroma. No such elevation was seen in keratoconus corneas. These data were confirmed by immunostaining, zymography, and Western blotting. mRNA levels of five other proteinases and of three tissue inhibitors of MMPs were similar to normal in diabetic and DR corneal epithelium and stroma. The data suggest that alterations of laminins, nidogen-1/entactin, and epithelial integrin in DR corneas may occur because of an increased proteolytic degradation. MMP-10 overexpressed in the diabetic corneal epithelium seems to be the major contributor to the observed changes in DR corneas. Such alterations may bring about epithelial adhesive abnormalities clinically seen in diabetic corneas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.