Acoustic emission (AE) signal processing and interpretation are essential in mining engineering to acquire source information about AE events. However, AE signals obtained from coal mine monitoring systems often contain nonlinear noise, limiting the effectiveness of conventional analysis methods. To address this issue, a novel denoising approach using enhanced variational mode decomposition (VMD) and fuzzy entropy is proposed in this study. The denoised AE signal’s spectral multifractal features are analyzed. The optimization algorithm based on VMD with a weighted frequency index is introduced to avoid mode mixing and outperform other decomposition methods. The characteristic parameter Δα of the AE spectral multifractal parameter serves as an early warning indicator of coal instability. These findings contribute to the accurate extraction of time–frequency features and provide insights for on-site AE signal processing.
This paper presents a reconfigurable mechanism for the multiplier. The proposed mechanism is applied to generate a multiplier, whose data width, type and pipeline depth can be customized. The data width of each operand of these generated multipliers can be configured for 4i where i=1, 2, 3, 4, 5, 6, 7, 8. And the data type of operand can be unsigned or signed at will. The multiplier is composed of the smallest multiplier-cells, the 4-bit multiplier. Synthesized results could reach as high as 425.53MHz using SMIC 0.13um CMOS technology library under the worst case condition.
In order to obtain motion with large travel and high precision, the micro-drive system is used to compensate for the motion error of the macro-drive system in the macro/micro dual-drive system. The research on the micro-drive rotary system lags behind the micro-drive linear system, so it is of great significance to study the designing and error compensation performance of a precision micro-drive rotary system. In this paper, a precision micro-drive rotary system is designed, the error compensation scheme of the system is proposed, and the system feasibility in design and error compensation is tested by FEM simulation analysis and performance experiments. Firstly, a precision micro-drive rotary system is designed to provide high-precision rotary motion, which consists of a micro rotary mechanism and PZT. In the system, the micro rotary mechanism is developed based on the compound motion principle of flexure hinge, which can accurately transform an input of linear motion into an output of rotary motion according to a certain relationship. Secondly, for finishing the error compensation scheme of the system, the maximum compensation modifier
θ
max
′
is proposed based on the analysis of error compensation equations of point-to-point motion and continuous motion. Finally, in order to facilitate the use of engineering, the driven voltage equation of error compensation is derived by the error compensation performance experiment. The simulation and experiment results indicate that both the design and error-compensation-range of the system satisfy the needs of practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.