This paper proposes a new method for predicting the displacement and internal force of constructed tunnels induced by adjacent excavation with dewatering. In this method, the total excavation-induced additional stress on the constructed tunnel is derived by superposing the additional stresses induced by excavation unloading and dewatering effects. The additional stress induced by unloading effect is calculated using Mindlin’s solution. The additional stress induced by dewatering effect is calculated using the principle of effective stress and the Dupuit precipitation funnel curve. With the beam on elastic foundation method, the total additional stress is then used for calculating the tunnel displacement and internal force caused by adjacent excavation with dewatering. Based on three well-documented case histories, the performance of the proposed method is verified. Moreover, a parametric analysis is also performed to capture the effects of excavation depth, tunnel-to-excavation distance, initial water level, excavation plan view size, and specific yield on the responses of the constructed tunnels. The results indicate that the effect of excavation depth on the tunnel maximum vertical displacement, maximum bending moment, and maximum shear force is more significant at an excavation depth greater than the cover depth of the constructed tunnel. The tunnel maximum vertical displacement, maximum bending moment, and maximum shear force decrease nonlinearly with an increase in the tunnel-to-excavation distance and the initial water level. Among the investigated parameters, the excavation dimension in the tunnel longitudinal direction affects most the tunnel responses. The effect of specific yield on the tunnel displacement and internal force induced by adjacent excavation with dewatering becomes more obvious as increasing the initial water level and excavation depth.
This paper investigates the ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments by adopting the nonlinear three-dimensional (3D) finite element method (FEM). The performance of the adopted FEM is demonstrated to be satisfactory by comparing the numerical analysis results with the field monitoring data in a typical case history and with the predicted results generated by a modified version of the Peck’s empirical Gaussian formula. It has been found that the tunnelling-induced transverse ground surface settlement troughs and the distributions of the subsurface horizontal and vertical ground displacements are mostly similar in both form and magnitude for the considered various radii of curvature of tunnel alignment including 50 m, 100 m, 150 m, 200 m, 250 m, 300 m, 400 m, and infinity (i.e., straight-line tunnel). Considering the variational characteristics of the ground deformations with the magnitude of the radius of curvature, the radius of curvature of 100 m can be regarded as a critical tunnel alignment radius of curvature controlling the transformation of the curved tunnelling-induced ground deformational behaviors. For the benefit of geotechnical engineers interested in curved tunnelling with a small radius of curvature, a discussion of the technologies for reducing the overexcavation and improving the accuracy of tunnel lining segment installation is also presented.
Foundation pit envelope and foundation pit excavation solution design is a multidisciplinary problem that could be linked to a series of safety issues in the geotechnical engineering of an actual construction project. Moreover, the construction of large deep foundation pit in soft soil often faces greater risks and challenges as the support structure deforms more easily and unpredictably. In order to improve the deformation prediction of deep foundation pit engineering precision and efficiency and to ensure that the construction of deep foundation pit engineering is safe and efficient, in this article the traditional MSD (mobilizable strength design) theory research and analysis, combined with the Jinan formation characteristics of a tunnel in JInan, and new parameters were introduced to the original MSD method theory: the wall itself within the bending strain energy U and support compression elastic potential energy of V. A new law of conservation of energy is constructed, and finally, an optimized MSD method has been proposed, this method is shown in the article. Finally, the results of foundation pit deformation calculation were compared among the optimized MSD method, finite element calculation method, and field monitoring data analysis method, so as to demonstrate the reliability of the prediction system of optimized MSD method and finite element analysis method. The results show that, by optimizing the MSD calculation method, the horizontal displacement of the retaining wall varies depending on the excavation depth of the foundation pit and the form of internal support with the overall peak value of displacement between 0∼0.2% H (H being the excavation depth); the deformation of retaining wall increases gradually with the increase of excavation depth of the foundation pit, and the peak position of deformation gradually moves down with the excavation of foundation pit. The trend of these changes is consistent with the results of the finite element method and field data analysis method, proving that the optimized MSD method is reliable in predicting the deformation of the foundation pit under specific stratum conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.