Background and Objective: Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue-dependent and disease-dependent.This study aimed to identify novel periodontitis-associated circRNAs and predict relevant circRNA-periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic.Material and Methods: High-throughput sequencing and RT-qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA-disease association prediction, and circRNA-miRNA-mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver-operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. Results: High-throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT-qPCR that This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Genetic dissection of neuropsychiatric disorders can potentially reveal novel therapeutic targets. While genome-wide association studies (GWAS) have tremendously advanced our understanding, we approach a sample size bottleneck (i.e., the number of cases needed to identify >90% of all loci is impractical). Therefore, computationally enhancing GWAS on existing samples may be particularly valuable. Here, we describe DeepGWAS, a deep neural network-based method to enhance GWAS by integrating GWAS results with linkage disequilibrium and brain-related functional annotations. DeepGWAS enhanced schizophrenia (SCZ) loci by ~3X when applied to the largest European GWAS, and 21.3% enhanced loci were validated by the latest multi-ancestry GWAS. Importantly, DeepGWAS models can be transferred to other neuropsychiatric disorders. Transferring SCZ-trained models to Alzheimer’s disease and major depressive disorder, we observed 1.3-17.6X detected loci compared to standard GWAS, among which 27-40% were validated by other GWAS studies. We anticipate DeepGWAS to be a powerful tool in GWAS studies.
The three-dimensional organization of chromatin plays a critical role in gene regulation. Recently developed technologies, such as HiChIP and proximity ligation-assisted ChIP-Seq (PLAC-seq) (hereafter referred to as HP for brevity), can measure chromosome spatial organization by interrogating chromatin interactions mediated by a protein of interest. While offering cost-efficiency over genome-wide unbiased high-throughput chromosome conformation capture (Hi-C) data, HP data remain sparse at kilobase (Kb) resolution with the current sequencing depth in the order of 108 reads per sample. Deep learning models, including HiCPlus, HiCNN, HiCNN2, DeepHiC and Variationally Encoded Hi-C Loss Enhancer (VEHiCLE), have been developed to enhance the sequencing depth of Hi-C data, but their performance on HP data has not been benchmarked. Here, we performed a comprehensive evaluation of HP data sequencing depth enhancement using models developed for Hi-C data. Specifically, we analyzed various HP data, including Smc1a HiChIP data of the human lymphoblastoid cell line GM12878, H3K4me3 PLAC-seq data of four human neural cell types as well as of mouse embryonic stem cells (mESC), and mESC CCCTC-binding factor (CTCF) PLAC-seq data. Our evaluations lead to the following three findings: (i) most models developed for Hi-C data achieve reasonable performance when applied to HP data (e.g. with Pearson correlation ranging 0.76–0.95 for pairs of loci within 300 Kb), and the enhanced datasets lead to improved statistical power for detecting long-range chromatin interactions, (ii) models trained on HP data outperform those trained on Hi-C data and (iii) most models are transferable across cell types. Our results provide a general guideline for HP data enhancement using existing methods designed for Hi-C data.
Since the mid‐2000s, there has been a resurrection of interest in modern modifications of fiducial inference. To date, the main computational tool to extract a generalized fiducial distribution is Markov chain Monte Carlo (MCMC). We propose an alternative way of computing a generalized fiducial distribution that could be used in complex situations. In particular, to overcome the difficulty when the unnormalized fiducial density (needed for MCMC) is intractable, we design a fiducial autoencoder (FAE). The fitted FAE is used to generate generalized fiducial samples of the unknown parameters. To increase accuracy, we then apply an approximate fiducial computation (AFC) algorithm, by rejecting samples that when plugged into a decoder do not replicate the observed data well enough. Our numerical experiments show the effectiveness of our FAE‐based inverse solution and the excellent coverage performance of the AFC‐corrected FAE solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.