Accurate and robust cephalometric image analysis plays an essential role in orthodontic diagnosis, treatment assessment and surgical planning. This paper proposes a novel landmark localization method for cephalometric analysis using multiscale image patch-based graph convolutional networks. In detail, image patches with the same size are hierarchically sampled from the Gaussian pyramid to well preserve multiscale context information. We combine local appearance and shape information into spatialized features with an attention module to enrich node representations in graph. The spatial relationships of landmarks are built with the incorporation of three-layer graph convolutional networks, and multiple landmarks are simultaneously updated and moved toward the targets in a cascaded coarse-to-fine process. Quantitative results obtained on publicly available cephalometric X-ray images have exhibited superior performance compared with other state-of-the-art methods in terms of mean radial error and successful detection rate within various precision ranges. Our approach performs
Accurate and robust anatomical landmark localization is a mandatory and crucial step in deformation diagnosis and treatment planning for patients with craniomaxillofacial (CMF) malformations. In this paper, we propose a trainable end-to-end cephalometric landmark localization framework on CBCT scans, referred to as CMF-Net, which combines the appearance with transformers, geometric constraint, and adaptive wing (AWing) loss. More precisely: 1) We decompose the localization task into two branches: the appearance branch integrates transformers for identifying the exact positions of candidates, while the geometric constraint branch at low resolution allows the implicit spatial relationships to be effectively learned on the reduced training data. 2) We use the AWing loss to leverage the difference between the pixel values of the target heatmaps and the automatic prediction heatmaps. We verify our CMF-Net by identifying the 24 most relevant clinical landmarks on 150 dental CBCT scans with complicated scenarios collected from real-world clinics. Comprehensive experiments show that it performs better than the state-of-the-art deep learning methods, with an average localization error of 1.108 mm (the clinically acceptable precision range being 1.5 mm) and a correct landmark detection rate equal to 79.28%. Our CMF-Net is time-efficient and able to locate skull landmarks with high accuracy and significant robustness. This approach could be applied in 3D cephalometric measurement, analysis, and surgical planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.