For children with autism, music therapy has aroused great concern with its novelty and better influence. Music therapy, as one of the effective treatment methods, has an important influence on the social interaction, behavior, and emotion of autistic children. This study attempts to explore a form of applying highly specialized impromptu music therapy to the personal treatment of autistic children in schools for the disabled, as well as the design method of specific music activities. Based on music data mining, the machine learning method is introduced to model music emotion features, and various algorithms are compared to find a model with higher recognition rate, and, at the same time, the antinoise ability and generalization ability of the model are further improved. Finally, a music emotion cognitive model with better performance is established. The results show that the model can effectively promote the overall development of autistic children’s cognitive movement, social communication, language communication, and cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.