We report the first experiments carried out on a new imaging setup, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with the temporal resolution of extreme ultraviolet (XUV) attosecond pulse trains. The very short pulses were provided by high-harmonic generation and used to illuminate lithographic structures and Au nanoparticles, which, in turn, were imaged with a PEEM resolving features below 300 nm. We argue that the spatial resolution is limited by the lack of electron energy filtering in this particular demonstration experiment. Problems with extensive space charge effects, which can occur due to the low probe pulse repetition rate and extremely short duration, are solved by reducing peak intensity while maintaining a sufficient average intensity to allow imaging. Finally, a powerful femtosecond infrared (IR) beam was combined with the XUV beam in a pump-probe setup where delays could be varied from subfemtoseconds to picoseconds. The IR pump beam could induce multiphoton electron emission in resonant features on the surface. The interaction between the electrons emitted by the pump and probe pulses could be observed.
Zwitterionic gemini surfactants have hydrophilic head groups consisting of two polar groups with different charges. Species synthesized to date can be classed as anionic–cationic, anionic–nonionic, and cationic‐nonionic. These surfactants not only have a small repulsion between the hydrophilic head groups, but also have a more compact arrangement at the interface, which greatly reduces the surface and interfacial tensions. In addition, owing to the existence of zwitterions, they are endowed with a unique aggregation morphology and unique rheology in solution, so they has the potential for a number of applications. The present research situation and potential research directions of the synthesis methods of the three types of zwitterionic gemini surfactants are discussed in this paper.
The dynamic spectral properties of semiconductor lasers during its tuning are very important for frequency modulation-based applications. The spectral properties of a distributed feedback (DFB) interband cascade laser (ICL) under injection current tuning (i.e., slope efficiency, dynamic tuning rate, and instantaneous linewidth) were measured by using short delayed self-heterodyne interferometry combined with time-frequency analysis of the interferometric signal. The relations of these spectral characteristics with the injection current, tuning frequency, and operating temperature of the laser were investigated as well. The dynamic tuning rate of the laser varies from 0.07 nm/mA to 0.16 nm/mA depending on the injection current and tuning frequency, which is considerably below the static tuning rate 0.20 nm/mA. The laser instantaneous linewidth increases within 360 kHz to 760 kHz as the injection current increases or the tuning frequency increases. Unexpectedly, both the dynamic tuning rate and linewidth seem not to be related to the operating temperature of the laser. These results will be very useful for understanding the spectral properties and optimizing the frequency modulation of DFB-ICLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.