PurposeThe purpose of this paper is to investigate the influencing rule of the standoff distance variations between the nozzle outlet and the powder deposition point on forming dimensional accuracy.Design/methodology/approachThe thin‐wall parts were built with three different standoff distances: 1 mm more than the powder focus length, equal to the powder focus length and 1 mm less than the powder focus length. Based on the experimental results, the steady standoff distance can be acquired and the difference between the building height and the ideal height of thin‐wall parts can be compensated automatically in several layers by theoretical calculation.FindingsThe experimental results show that the top surface unevenness of thin‐wall parts can be compensated automatically on the consequent successive layers when the standoff distance is less than the powder focal length from the nozzle outlet to the powder focal point, and the poorer results are obtained when the standoff distance is equal to or more than the powder focal length in the deposition of stainless steel 316L under open‐loop control.Practical implicationsThe shape of parts affects the self‐regulation effect in practical applications, so the self‐regulation effect is useful when the single contour of parts is continuous straight faces and the surface of parts is perpendicular to the build platform, and will be useless for parts with holes.Originality/valueAccording to the requirements under different process conditions in practical applications, one should first find out the relationship between the standoff distance and the building height of single‐trace cladding layer, and then use regression algorithm to obtain the stable standoff distance by simple theoretical calculation. The uniform building height, layer thickness and smooth surface can be obtained at the stable standoff distance under open‐loop control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.