Microbial communication has attracted notable attention as an indicator of microbial interactions that lead to marked alterations of secondary metabolites (SMs) in varied environments. However, the mechanisms responsible for SM regulation are not fully understood, especially in fungal-fungal interactions. Here, cocultivation of an endophytic fungus Epicoccum dendrobii with the model fungus Aspergillus nidulans and several other filamentous fungi triggered widespread alteration of SMs. Multiple silent biosynthetic gene clusters in A. nidulans were activated by transcriptome and metabolome analysis. Unprecedentedly, gene deletion and replacement proved that a partial loss-of-function VeA1 protein, but not VeA, was associated with the widespread SM changes in both A. nidulans and A. fumigatus during cocultivation. VeA1 regulation required the transcription factor SclB and the velvet complex members LaeA and VelB for producing aspernidines as representative formation of SMs in A. nidulans . This study provides new insights into the mechanism that trigger metabolic changes during fungal-fungal interactions.
Ochratoxin A (OTA) usually contaminates agricultural products such as grapes, oatmeal, coffee and spices. Light was reported as an effective strategy to control spoilage fungi and mycotoxins. This research investigated the effects of light with different wavelengths on the growth and the production of OTA in Aspergillus ochraceus and Aspergillus carbonarius. The results showed that the growth of both fungi were extremely inhibited by UV-B. Short-wavelength (blue, violet) significantly inhibited the production of OTA in both fungi, while the inhibitory effect of white was only demonstrated on A. ochraceus. These results were supported by the expression profiles of OTA biosynthetic genes of A. ochraceus and A. carbonarius. To clarify, the decrease in OTA production is induced by inhibition or degradation; therefore, the degradation of OTA under different wavelengths of light was tested. Under UV-B, the degradation rate of 10 μg/mL OTA standard pure-solution samples could reach 96.50% in 15 days, and the degradation effect of blue light was relatively weak. Furthermore, infection experiments of pears showed that the pathogenicity of both fungi was significantly decreased under UV-B radiation. Thus, these results suggested that light could be used as a potential target for strategies in the prevention and control of ochratoxigenic fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.