The application of conventional metal–organic frameworks (MOFs) as electrode materials in supercapacitors is largely hindered by their conventionally poor electrical conductivity. This study reports the fabrication of conductive MOF nanowire arrays (NWAs) and the application of them as the sole electrode material for solid ‐state supercapacitors. By taking advantage of the nanostructure and making full use of the high porosity and excellent conductivity, the MOF NWAs in solid‐state supercapacitor show the highest areal capacitance and best rate performance of all reported MOF materials for supercapacitors, which is even comparable to most carbon materials.
Recently, the emergence of conductive metal-organic frameworks (MOFs) has given great prospects for their applications as active materials in electronic devices. In this work, a high-quality, free-standing conductive MOF membrane was prepared by an air-liquid interfacial growth method. Accordingly, field-effect transistors (FETs) possessing a crystalline microporous MOF channel layer were successfully fabricated for the first time. The porous FETs exhibited p-type behavior, distinguishable on/off ratios, and excellent field-effect hole mobilities as high as 48.6 cm V s, which is even comparable to the highest value reported for solution-processed organic or inorganic FETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.