Image recognition supports several applications, for instance, facial recognition, image classification, and achieving accurate fruit and vegetable classification is very important in fresh supply chain, factories, supermarkets, and other fields. In this paper, we develop a hybrid deep learning-based fruit image classification framework, named attention-based densely connected convolutional networks with convolution autoencoder (CAE-ADN), which uses a convolution autoencoder to pre-train the images and uses an attention-based DenseNet to extract the features of image. In the first part of the framework, an unsupervised method with a set of images is applied to pre-train the greedy layer-wised CAE. We use CAE structure to initialize a set of weights and bias of ADN. In the second part of the framework, the supervised ADN with the ground truth is implemented. The final part of the framework makes a prediction of the category of fruits. We use two fruit datasets to test the effectiveness of the model, experimental results show the effectiveness of the framework, and the framework can improve the efficiency of fruit sorting, which can reduce costs of fresh supply chain, factories, supermarkets, etc.
We have synthesized a series of new D−π−A compounds that feature various electron donors and a fixed benzothiazolyl unit as an electron acceptor. The crystal structure of compound 3 [trans,trans-2-{4-[(4-N-carbazolyl)styryl]styryl}-1,3-benzothiazole, CSSB] was determined. All these compounds show high fluorescence quantum yields and 3 in toluene gives the most intense blue emission around 450 nm with a quantum yield of Φ = 0.69. When excited at 800 nm by a Ti:sapphire femtosecond laser, these compounds exhibit strong two-photon-excited fluorescence (TPEF) in the blue-
Wide field small aperture telescopes are working horses for fast sky surveying. Transient discovery is one of their main tasks. Classification of candidate transient images between real sources and artifacts with high accuracy is an important step for transient discovery. In this paper, we propose two transient classification methods based on neural networks. The first method uses the convolutional neural network without pooling layers to classify transient images with low sampling rate. The second method assumes transient images as one dimensional signals and is based on recurrent neural networks with long short term memory and leaky ReLu activation function in each detection layer. Testing with real observation data, we find that although these two methods can both achieve more than 94% classification accuracy, they have different classification properties for different targets. Based on this result, we propose to use the ensemble learning method to further increase the classification accuracy to more than 97%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.