Background To investigate the management and outcomes of patients with lacrimal sac squamous cell carcinoma (SCC). Methods This retrospective study examined 69 lacrimal sac SCC cases treated at our hospital between 1992 and 2017. The potential risk factors for prognosis, a new staging method, treatment outcomes, and complications were investigated. Results The 5‐year overall survival (OS) and progression‐free survival (PFS) were 87.6 ± 4.8% and 76.3 ± 6.4%, respectively. Positive lymph node was associated with worse OS and PFS. We divided lacrimal sac SCC into four clinical stages, with significant differences in OS (P = .026) and PFS (P = .042) among each stage. Definitive radiotherapy was equivalent to surgery plus radiotherapy in 26.1% (18/69) of cases, and the incidence of complications was not higher. Conclusions Lymph node status was a key factor in determining outcomes. Our staging method could effectively classify tumor stage and predict prognosis, which can contribute to optimizing treatment regimes. Radiotherapy played an important role in treatment.
Pachymic acid (PA) is a lanostane type triterpenoid isolated from Poria cocos, which possesses an anti-tumor effect in breast cancer, prostate cancer, lung cancer, and bladder cancer cells. In this study, we investigated the effect of PA on the growth and apoptosis of human immortalized cell line (HOS) and primary osteosarcoma cells by a Cell Counting Kit-8 (CCK-8) and Annexin V and propidium iodide (PI) staining, respectively. Western blot was used to measure the expression of cleaved Caspase 3, PTEN, and AKT, as well as the AKT phosphorylation. The Caspase 3 activity was determined using the Caspase-3 Colorimetric Assay Kit. From the results, PA significantly reduced cell proliferation in a concentration- and time-dependent manner. PA also induced cell apoptosis in a dose-dependent fashion. PA treatment led to increased Caspase 3 activation and PTEN expression, as well as reduced AKT phosphorylation. Moreover, Ac-DEVD-CHO (a Caspase 3/7 inhibitor) pre-treatment or PTEN knockdown partially blocked the effects of PA on cell proliferation and apoptosis. Caspase 3/7 inhibitor had an additive effect with PTEN knockdown. Collectively, our results suggested that induction of apoptosis by PA was mediated in part by PTEN/AKT signaling and Caspase 3/7 activity. This study provides evidence that PA might be useful in the treatment of human osteosarcoma.
The morbidity and mortality of esophageal cancer is one of the highest around the world and the principal therapeutic method is radiation. Thus, searching for sensitizers with lower toxicity and higher efficiency to improve the efficacy of radiation therapy is critical essential. Our research group has previously reported that imetelstat, the thio-phosphoramidate oligonucleotide inhibitor of telomerase, can decrease cell proliferation and colony formation ability as well as increase DNA breaks induced by radiation in esophageal cancer cells. Further study in this project showed that imetelstat significantly sensitized esophageal cancer cells to radiation in vitro. Later study showed that imetelstat leads to increased cell apoptosis. We also measured the expression level of several DNA repair and apoptosis signaling proteins. pS345 CHK1, γ-H2AX, p53 and caspase3 expression were up-regulated in imetelstat treated cells, identifying these factors as molecular markers. Mouse in vivo model using imetelstat at clinically achievable concentrations and fractionated irradiation scheme yielded results demonstrating radiosensitization effect. Finally, TUNEL assay, caspase 3 and Ki67 staining in tumor tissue proved that imetelstat sensitized esophageal cancer to radiation in vivo through promoting cell apoptosis and inhibiting cell proliferation. Our study supported imetelstat increase radiation sensitivity of esophageal squamous cell carcinoma through inducing cell apoptosis and the specific inhibitor of telomerase might serve as a potential novel therapeutic tool for esophageal squamous cell carcinoma therapy.
Digestive cancer is one of the leading causes of cancer mortality in the world. Despite a number of studies being conducted, the exact mechanism for treating digestive cancer has not yet been fully understood. To survive, digestive cancer cells are subjected to various internal and external adverse factors, such as hypoxia, nutritional deficiencies or drug toxicity, resulting in accumulation of misfolded and unfolded protein in endoplasmic reticulum (ER) lumen further leading to ER stress and the unfolded protein response (UPR). During the last years, studies on the relationship between ER stress and microRNAs (miRNAs) has burst on the scene. miRNAs are non-coding RNAs with a length of 21~22nucleotides involved in post-transcriptional regulation of gene expression, which could be regarded as oncomiRs (tumor inducers) and tumor suppressors regulating cancer cell proliferation, invasion, and apoptosis by differently affecting the expression of genes related to cancer cell signaling. Therefore, investigating the interaction between ER stress and miRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we mainly discuss miRNAs focusing on its regulation, role in ER stress induced apoptosis in Digestive cancer, expound the underlying mechanism, thus provides a theoretical foundation for finding new therapeutic targets of digestive cancer.
BackgroundBoth glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are important molecular chaperones that play critical roles in maintaining tumor survival and progression. This study investigated the effects in prostate cancer cells following the downregulation of GRP78 and GRP94.MethodsRNA interference was used to downregulate GRP78 and GRP94 expression in the prostate cancer cell line, PC-3. The effects on apoptosis and cell migration was examined along with expression of these related proteins.ResultsSmall interfering RNAs targeting GRP78 and GRP94 successfully down-regulated their expression. This resulted in the induction of apoptosis and inhibition of cell migration. Preliminary mechanistic studies indicated that caspase-9 (cleaved) and Bax expression levels were upregulated while Bcl-2 and vimentin expression levels were downregulated.ConclusionCo-downregulation of GRP78 and GRP94 expression induces apoptosis and inhibits migration in prostate cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.