Many structures in civil engineering are symmetrical. Crack detection is a critical task in the monitoring and inspection of civil engineering structures. This study implements a lightweight neural network based on the YOLOv4 algorithm to detect concrete surface cracks. In the extraction of backbone and the design of neck and head, the symmetry concept is adopted. The model modules are improved to reduce the depth and complexity of the overall network structure. Meanwhile, the separable convolution is used to realize spatial convolution, and the SPP and PANet modules are improved to reduce the model parameters. The convolutional layer and batch normalization layer are merged to improve the model inference speed. In addition, using the focal loss function for reference, the loss function of object detection network is improved to balance the proportion of the cracks and the background samples. To comprehensively evaluate the performance of the improved method, 10,000 images (256 × 256 pixels in size) of cracks on concrete surfaces are collected to build the database. The improved YOLOv4 model achieves an mAP of 94.09% with 8.04 M and 0.64 GMacs. The results show that the improved model is satisfactory in mAP, and the model size and calculation amount are greatly reduced. This performs better in terms of real-time detection on concrete surface cracks.
Cracks are one of the most common factors that affect the quality of concrete surfaces, so it is necessary to detect concrete surface cracks. However, the current method of manual crack detection is labor-intensive and time-consuming. This study implements a novel lightweight neural network based on the YOLOv4 algorithm to detect cracks on a concrete surface in fog. Using the computer vision algorithm and the GhostNet Module concept for reference, the backbone network architecture of YOLOv4 is improved. The feature redundancy between networks is reduced and the entire network is compressed. The multi-scale fusion method is adopted to effectively detect cracks on concrete surfaces. In addition, the detection of concrete surface cracks is seriously affected by the frequent occurrence of fog. In view of a series of degradation phenomena in image acquisition in fog and the low accuracy of crack detection, the network model is integrated with the dark channel prior concept and the Inception module. The image crack features are extracted at multiple scales, and BReLU bilateral constraints are adopted to maintain local linearity. The improved model for crack detection in fog achieved an mAP of 96.50% with 132 M and 2.24 GMacs. The experimental results show that the detection performance of the proposed model has been improved in both subjective vision and objective evaluation metrics. This performs better in terms of detecting concrete surface cracks in fog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.