N6-methyladenosine (m6A) is methylation that occurs in the N6-position of adenosine, which is the most prevalent internal modification on eukaryotic mRNA. Accumulating evidence suggests that m6A modulates gene expression, thereby regulating cellular processes ranging from cell self-renewal, differentiation, invasion and apoptosis. M6A is installed by m6A methyltransferases, removed by m6A demethylases and recognized by reader proteins, which regulate of RNA metabolism including translation, splicing, export, degradation and microRNA processing. Alteration of m6A levels participates in cancer pathogenesis and development via regulating expression of tumor-related genes like BRD4, MYC, SOCS2 and EGFR. In this review, we elaborate on recent advances in research of m6A enzymes. We also highlight the underlying mechanism of m6A in cancer pathogenesis and progression. Finally, we review corresponding potential targets in cancer therapy.
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Cancer stem cells are responsible for sustaining the tumor and giving rise to proliferating and progressively differentiating cells. However, the molecular mechanisms regulating the process of cancer stem cell differentiation is not clearly understood. Recently, we reported the isolation of the epithelial ovarian cancer (EOC) stem cells (Type I/CD44+). In this study we show that Type I/CD44+ cells are characterized by low levels of both miR-199a and miR-214, whereas mature EOC cells (Type II/CD44-) have higher levels of miR-199a and miR-214. Moreover, these two miRNAs are regulated as a cluster on pri-miR-199a2 within the human Dnm3os gene (GenBank FJ623959). This study identify Twist1 as a regulator of this unique miRNA cluster responsible for the regulation of the IKKβ/NFκB and PTEN/AKT pathways and its association of ovarian cancer stem cell differentiation. Our data suggest that Twist1 may be an important regulator of “stemness” in EOC cells. The regulation of MIR199A2/214 expression may be used as a potential therapeutic approach in EOC patients.
Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dosedependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.is the most common neurodegenerative disorder in the elderly. Intracellular accumulation of neurofibrillary tangles (NFTs) and extracellular precipitation of senile plaques are the most prominent pathological hallmarks of AD (1-3). The clinical-to-pathological correlation studies have demonstrated that the number of NFTs consisting of hyperphosphorylated tau correlates with the degree of dementia in AD (4-6). Tau is the major microtubule-associated protein that normally contains 2-3 mol of phosphate per mole of tau protein.In AD brains, tau is abnormally hyperphosphorylated (namely AD-P-tau) and the phosphate level increases to 5-9 mol phosphate per mole tau (4). AD-P-tau does not bind to tubulin and become incompetent in promoting microtubule assembly and maintaining the stability of the microtubules. The AD-P-tau also sequesters normal tau from microtubules (7), and serves as a template for the conversion of normal tau into misfolded protein in a prion-like manner (8). In addition to hyperphosphorylation, tau is also contains other posttranslational modifications, such as ubiquitination and SUMOylation (5, 9-11). The abnormal modification of tau also decreases its solubility, and ∼40% of the hyperphosphorylated tau in AD brains has been isolated as sedimentable nonfibril cytosolic protein (1, 12). Although the mechanisms underlying the formation of the NFTs remain unclear, the altered tau modifications and impaired degradation are believed to play a role. Therefore, clarifying the mechanism that may cause tau accumulation is of great significance for understanding the pathogenesis of AD and for developing new therapeutics.Like other proteins, tau can be degraded by autophagy-lysosomal and ubiqutin-proteasomal systems under physiological conditions. In mouse cortical neurons, a C-terminal-trunca...
Chromatin modification is pivotal to the epithelial-mesenchymal transition (EMT), which confers potent metastatic potential to cancer cells. Here, we report a role for the chromatin remodeling factor lymphoid-specific helicase (LSH) in nasopharyngeal carcinoma (NPC), a prevalent cancer in China. LSH expression was increased in NPC, where it was controlled by the Epstein-Barr virus-encoded protein LMP1. In NPC cells in vitro and in vivo, LSH promoted cancer progression in part by regulating expression of fumarate hydratase (FH), a core component of the tricarboxylic acid cycle. LSH bound to the FH promoter, recruiting the epigenetic silencer factor G9a to repress FH transcription. Clinically, we found that the concentration of TCA intermediates in NPC patient sera was deregulated in the presence of LSH. RNAi-mediated silencing of FH mimicked LSH overexpression, establishing FH as downstream mediator of LSH effects. The TCA intermediates a-KG and citrate potentiated the malignant character of NPC cells, in part by altering IKKa-dependent EMT gene expression. In this manner, LSH furthered malignant progression of NPC by modifying cancer cell metabolism to support EMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.