Defined cavities are found in biological systems, such as in enzymes to accelerate specific reactions with specific molecular targets, or as transport containers for molecular cargoes. Chemists have been inspired by those phenomena found in nature and synthesized defined cage compounds for different purposes, such as for stabilizing reactive intermediates, running reactions within the cavities or studying recognition events. However, most cage compounds are based on the coordination of metal ions, and only a few are charge neutral. Purely organic cages are usually charge neutral and more stable due to existing covalent bonds. Covalent bonds can be made in two ways, applying irreversible reactions or reversible reactions. By introducing dynamic covalent chemistry (DCC), cages have become accessible in good yields from rather simple precursors. Here, we compare both methods and highlight those that give very good yields. Furthermore, the use of organic cage compounds in sorption, recognition, sensing, separation and stabilization of molecules will be discussed.
Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape-persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single-crystal X-ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m(2) g(-1) and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.
Discrete interlocked three-dimensional structures are synthetic targets that are sometimes difficult to obtain with "classical" synthetic approaches, and dynamic covalent chemistry has been shown to be a useful method to form such interlocked structures as thermodynamically stable products. Although interlocked and defined hollow structures are found in nature, for example, in some viruses, similar structures have rarely been synthesized on a molecular level. Shape-persistent interlocked organic cage compounds with dimensions in the nanometer regime are now accessible in high yields during crystallization through the formation of 96 covalent bonds. The interlocked molecules form an unprecedented porous material with intrinsic and extrinsic pores both in the micropore and mesopore regime.
Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape-persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single-crystal X-ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m 2 g À1 and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.