This paper theoretically studies the effect of eccentricity on the conditions of capillary emptying (determined by critical Bond number) in a horizontal annular tube in a downward gravity field. Experiments are conducted to compare with theoretical results. We find that non-horizontal eccentricity can lead to the occurrence of a re-entrant liquid-state transition (from liquid non-occlusion to liquid plug to liquid non-occlusion) with increasing Bond number, when the eccentricity (e) or inner-to-outer radius ratio (χ) is large enough, and the two liquid non-occlusion states correspond to different emptying mechanisms dominated by the gravity effect and the ‘wedge’ effect, respectively. Existence of the re-entrant transition is accompanied by occurrence of unconditional liquid non-occlusion at large enough or small enough contact angles regardless of Bond numbers. The critical Bond numbers at a contact angle γ for vertical upward eccentricity are equal to those at a contact angle 180° − γ for vertical downward eccentricity. In a parameter space (γ, e/(1 − χ)), the region with the re-entrant transition becomes larger with the eccentric angle varying from 0° (horizontal) to 90° (vertical). Optimization of geometrical parameters and inner and outer contact angles can lead to better effect of capillary emptying. This paper provides a very effective scheme for removing a liquid blockage from a capillary in optofluidics/microfluidics.
A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC) grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC) short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.