Microbubble-mediated sonothrombolysis is a promising treatment for cerebral microthrombi and is based on ultrasound driven cavitation of microbubbles that accelerate thrombolysis via localized mechanical stress on the thrombi. 17Background and Purpose-Microthrombi originating from disintegrated clots or formed in situ may account for the poor clinical improvement of acute ischemic stroke after recanalization therapy. We attempted to determine whether microbubble-mediated sonothrombolysis could dissolve platelet-rich and erythrocyte-rich microthrombi, thereby reducing their brain injury-causing potential. Methods-Platelet-and erythrocyte-rich microthrombosis were induced by periadventitial application of 5% ferric chloride or thrombin to mesenteric microvessels in 75 Sprague-Dawley rats. Acute ischemic stroke was induced by intracarotid injection of platelet-or erythrocyte-rich microthrombi in another 50 rats. Rats were randomly divided into control (CON), ultrasound (US), ultrasound and microbubble (US+MB), recombinant tissue-type plasminogen activator (r-tPA), and US+MB+r-tPA groups. The post-treatment mesenteric microvessel recanalization rates, cerebral infarct volumes, and neurological scores were determined. Results-The recanalization rates of platelet-and erythrocyte-rich microthrombi in mesenteric microvessels were higher (P<0.05), and the cerebral infarct volumes and neurological scores of rats with either microthrombi were lower in the US+MB group than in the CON group (P<0.01). The infarct volumes and neurological scores were greater in the r-tPA group than in the US+MB and US+MB+r-tPA groups after treatment of rats with platelet-rich microthrombi (P<0.05).In contrast, after treatment of rats with erythrocyte-rich microthrombi, the infarct volumes and neurological scores were similar in the r-tPA and US+MB groups, but smaller in the US+MB+r-tPA group (P<0.05). Conclusions-Microbubble-mediated sonothrombolysis improved the outcomes of microthrombi-induced acute ischemic stroke. Thus, this method may serve as an attractive adjunct to recanalization therapy for acute ischemic stroke.
Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects.
Carcinoembryonic antigen-related cell adhesion molecule1 (CEACAM1) is a tumor-associated factor that is known to be involved in apoptosis, but the role of CEACAM1 in cardiovascular disease is unclear. We aims to investigate whether CEACAM1 influences cardiac remodeling in mice with myocardial infarction (MI) and hypoxia-induced cardiomyocyte injury. Both serum in patients and myocardial CEACAM1 levels in mice were significantly increased in response to MI, while levels were elevated in neonatal rat cardiomyocytes (NRCs) exposed to hypoxia. Eight weeks after MI, a lower mortality rate, improved cardiac function, and less cardiac remodeling in CEACAM1 knock-out (KO) mice than in their wild-type (WT) littermates were observed. Moreover, myocardial expression of mitochondrial Bax, cytosolic cytochrome C, and cleaved caspase-3 was significantly lower in CEACAM1 KO mice than in WT mice. In cultured NRCs exposed to hypoxia, recombinant human CEACAM1 (rhCEACAM1) reduced mitochondrial membrane potential, upregulated mitochondrial Bax, increased cytosolic cytochrome C and cleaved caspase-3, and consequently increased apoptosis. RhCEACAM1 also increased the levels of GRP78 and CHOP in NRCs with hypoxia. All of these effects were abolished by silencing CEACAM1. Our study indicates that CEACAM1 exacerbates hypoxic cardiomyocyte injury and post-infarction cardiac remodeling by enhancing cardiomyocyte mitochondrial dysfunction and endoplasmic reticulum stress-induced apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.