In this paper, the classification via sprepresentation and multitask learning is presented for target recognition in SAR image. To capture the characteristics of SAR image, a multidimensional generalization of the analytic signal, namely the monogenic signal, is employed. The original signal can be then orthogonally decomposed into three components: 1) local amplitude; 2) local phase; and 3) local orientation. Since the components represent the different kinds of information, it is beneficial by jointly considering them in a unifying framework. However, these components are infeasible to be directly utilized due to the high dimension and redundancy. To solve the problem, an intuitive idea is to define an augmented feature vector by concatenating the components. This strategy usually produces some information loss. To cover the shortage, this paper considers three components into different learning tasks, in which some common information can be shared. Specifically, the component-specific feature descriptor for each monogenic component is produced first. Inspired by the recent success of multitask learning, the resulting features are then fed into a joint sparse representation model to exploit the intercorrelation among multiple tasks. The inference is reached in terms of the total reconstruction error accumulated from all tasks. The novelty of this paper includes 1) the development of three component-specific feature descriptors; 2) the introduction of multitask learning into sparse representation model; 3) the numerical implementation of proposed method; and 4) extensive comparative experimental studies on MSTAR SAR dataset, including target recognition under standard operating conditions, as well as extended operating conditions, and the capability of outliers rejection.
This paper introduces a novel classification strategy based on the monogenic scale space for target recognition in Synthetic Aperture Radar (SAR) image. The proposed method exploits monogenic signal theory, a multidimensional generalization of the analytic signal, to capture the characteristics of SAR image, e.g., broad spectral information and simultaneous spatial localization. The components derived from the monogenic signal at different scales are then applied into a recently developed framework, sparse representation-based classification (SRC). Moreover, to deal with the data set, whose target classes are not linearly separable, the classification via kernel combination is proposed, where the multiple components of the monogenic signal are jointly considered into a unifying framework for target recognition. The novelty of this paper comes from: the development of monogenic feature via uniformly downsampling, normalization, and concatenation of the components at various scales; the development of score-level fusion for SRCs; and the development of composite kernel learning for classification. In particular, the comparative experimental studies under nonliteral operating conditions, e.g., structural modifications, random noise corruption, and variations in depression angle, are performed. The comparative experimental studies of various algorithms, including the linear support vector machine and the kernel version, the SRC and the variants, kernel SRC, kernel linear representation, and sparse representation of monogenic signal, are performed too. The feasibility of the proposed method has been successfully verified using Moving and Stationary Target Acquiration and Recognition database. The experimental results demonstrate that significant improvement for recognition accuracy can be achieved by the proposed method in comparison with the baseline algorithms.
Automatic target recognition has been widely studied over the years, yet it is still an open problem. The main obstacle consists in extended operating conditions, e.g.., depression angle change, configuration variation, articulation, and occlusion. To deal with them, this paper proposes a new classification strategy. We develop a new representation model via the steerable wavelet frames. The proposed representation model is entirely viewed as an element on Grassmann manifolds. To achieve target classification, we embed Grassmann manifolds into an implicit reproducing Kernel Hilbert space (RKHS), where the kernel sparse learning can be applied. Specifically, the mappings of training sample in RKHS are concatenated to form an overcomplete dictionary. It is then used to encode the counterpart of query as a linear combination of its atoms. By designed Grassmann kernel function, it is capable to obtain the sparse representation, from which the inference can be reached. The novelty of this paper comes from: 1) the development of representation model by the set of directional components of Riesz transform; 2) the quantitative measure of similarity for proposed representation model by Grassmann metric; and 3) the generation of global kernel function by Grassmann kernel. Extensive comparative studies are performed to demonstrate the advantage of proposed strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.