The asphalt mastic–aggregate interface plays an essential role in determining the service performance of asphalt mixtures. The objective of this paper was to investigate the adhesion behaviors and mechanism between asphalt mastic and aggregate based on molecular dynamic (MD) simulations. First, the asphalt mastic model considering the actual mass ratio of filler to asphalt (F/A) condition was established and validated in terms of thermodynamic properties. Second, the molecular arrangement characteristics of polar components on the aggregate substrate were analyzed by radial distribution function (RDF), relative concentration (RC), and mean square displacement (MSD). Third, the interfacial adhesion ability between asphalt and aggregate was quantitively evaluated based on the work of adhesion. Finally, the coupling effect of moisture and temperature on interfacial adhesion behaviors was investigated to explore the adhesion failure characteristics of the asphalt–aggregate interface. The results demonstrate that the thermodynamic properties could be employed to validate the reliability of the asphalt mastic model. The self-aggregation degree of polar components in base asphalt could be significantly increased with the addition of silica particles, exhibiting a change of configuration from “parallel arrangement” into “stack distribution” due to the high polarity of silica particles. The polar components in asphalt mastic exhibit a more uniform distribution state and lower mobility capability than base asphalt owing to the adsorption effect of silica particles. Silica particles with amounts of residual charges could significantly increase the electrostatic energy of the asphalt mastic–aggregate interface, contributing to an improvement of the adhesion between asphalt mastic and aggregate. The increase of temperature enhances the work of adhesion of the asphalt mastic–aggregate interface, which is opposite to that of the base asphalt–aggregate interface. The asphalt mastic exhibits a greater sensitivity to interfacial moisture damage than base asphalt. The findings would provide insights into a better understanding on the micro adhesion mechanism of the asphalt mastic–aggregate interface.
Cement emulsified asphalt composite binder (CEACB) plays a determining role in the construction of cold recycled asphalt pavements. Understanding the interaction behaviors of cement-emulsified asphalt is very essential to promote the serviceability of CEACB. The objective of this study was to explore the interaction behaviors and mechanism of cement-emulsified asphalt associated with microstructural characteristics and to assess the interaction ability of cement-emulsified asphalt by performing macro-rheological measurements. Firstly, the physico-chemical interaction of cement-emulsified asphalt was qualitatively discussed by analyzing the difference of characteristic peaks based on Fourier transform infrared (FTIR) spectrometer. Secondly, the micro-morphological evolution behaviors of CEACB attributing to the cement-emulsified asphalt interaction were investigated by using a fluorescence microscope (FM) and laser particle size analyzer (LPSA). Thirdly, the microstructural characteristics of CEACB were studied by observing the spatial network structure through the scanning electron microscopy (SEM). Finally, the macro-rheological index based on dynamic rheological shear (DSR) test was proposed to evaluate the interaction ability of cement-emulsified asphalt. The results show that the cement-emulsified asphalt interaction is merely a physical blending process due to the occurrence of no new characteristic peaks in the FTIR spectrum except for cement hydration products. The cement-emulsified asphalt interaction in early-age CEACB could be reflected by the aggregation process among asphalt droplets and the adsorption action of cement particles to asphalt droplets. A reasonable ratio of cement to emulsified asphalt could promote the formation of the denser spatial network structure of CEACB along with cement hydration products growing and interweaving with asphalt films. The K-B-G* index based on macro-rheological properties of CEACB with full consideration of cement hydration process is very suitable for evaluating the interaction ability of cement-emulsified asphalt under the condition of different cement proportions and curing time. The research would provide the support for understanding the natural properties of CEACB and promote the improvement of the mechanical performance of cold recycled asphalt pavements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.