The dynamics of proton transfer within a variety of substituted benzophenones/N,N-dimethylaniline contact radical ion pairs are examined in a wide range of solvent polarities. The correlation of the rate constants with the thermodynamic driving force reveals both a normal and inverted region for proton transfer in solvents with an E T 30 value of less than 43.1; in solvents with E T 30 greater than 43.8, only the normal region is observed. Also, the kinetic deuterium isotope effect is examined. The solvent and isotope dependence for the transfer process is examined within the context of the Lee-Hynes model for nonadiabatic proton transfer. The theoretical analysis of the experimental data suggests that the reaction path for proton transfer involves tunneling. Conventional transition state theory with the inclusion of tunneling in the region of the transition state cannot account for the observed kinetic behavior.
Picosecond absorption spectroscopy is employed in determining the dynamics of proton transfer within a variety of substituted benzophenones/N,N-dimethylaniline in a series of alkanenitrile solvents. A correlation of the rate constants for proton transfer with driving force reveals a normal region and an inverted region for proton transfer. The kinetics are analyzed within two theoretical frameworks for nonadiabatic proton transfer. The Borgis−Hynes model, which is based upon a low-frequency promoting mode that modulates the tunneling frequency, is found to be only in qualitative accord with the experiment. The Lee−Hynes model, which not only includes a low-frequency promoting mode but also allows for contributions from vibrational excitation of the proton reaction coordinate in the reactant and product states, is found to give an excellent fit to the experimental data.
The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.
An efficient method for the selective "N1" alkylation of indazoles is described. Use of alpha-halo esters, lactones, ketones, amides, and bromoacetonitrile provides good to excellent yield of the desired N1 products.
The synthesis, physical properties, antitumor activity, structure-activity relationships, and nephrotoxicity of a series of [2-substituted-4,5-bis(aminomethyl)-1,3-dioxolane]platinum(II) complexes are described. The 42 platinum(II) complexes having a seven-membered ring structure in this series have been prepared and characterized by 1H NMR, 13C NMR, IR, FAB-MS, and elemental analysis. All members of the series were designed to have a 1,3-dioxolane ring moiety in their carrier ligands to increase water solubility. The solubility of platinum complexes was related to the nature of leaving ligands and 2-substituents in the 4,5-bis(aminomethyl)-1,3-dioxolane carrier ligands. In general, compounds having two different R1 and R2 substituents in the 4,5-bis(aminomethyl)-1,3-dioxolane moiety were more water-soluble than those having the same substituents. Most members of this series showed the excellent antitumor activity against murine L1210 leukemia cells transplanted in mice and were superior to cisplatin and carboplatin. The (4R,5R)-stereoisomer 1a-h exhibited the higher antitumor activity than the corresponding (4S,5S)-stereoisomer 2a-h in the (1,1-cyclobutanedicarboxylato)platinum(II) complexes. The (glycolato)-platinum(II) complexes were highly cytotoxic toward four human stomach cancer cell lines, SNU-1, SNU-5, SNU-16, and NCI-N87, and among them, complexes 3d-g were even more cytotoxic than cisplatin. The (malonato)platinum(II) complex 1m and the (glycolato)platinum(II) complexes 3d-g were selected for further studies based on the greater in vivo and in vitro antitumor activity and desirable physical properties. The complexes 3e-g were almost equally cytotoxic to cisplatin toward human stomach cancer cell lines, KATO-III and MKN-45, and a human non-small cell lung cancer cell line, PC14. In contrast with cisplatin and carboplatin, five complexes selected significantly increased in life span in mice transplanted with cisplatin-resistant L1210 cells. Nephrotoxicity studies in ICR mice indicated that serum BUN and creatinine levels were not elevated when five complexes were given at a dose equal to 1.5 times the optimal dose determined in the in vivo L1210 screening system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.