Over the past few decades, flexible sensors have been developed from the "electronic" level to the "iontronic" level, and gradually to the "ionic" level. Ionic flexible sensors (IFS) are one kind of advanced sensors that are based on the concept of ion migration. Compared to conventional electronic sensors, IFS can not only replicate the topological structures of human skin, but also are capable of achieving tactile perception functions similar to that of human skin, which provide effective tools and methods for narrowing the gap between conventional electronics and biological interfaces. In this review, the latest research and developments on several typical sensing mechanisms, compositions, structural design, and applications of IFS are comprehensively reviewed. Particularly, the development of novel ionic materials, structural designs, and biomimetic approaches has resulted in the development of a wide range of novel and exciting IFS, which can effectively sense pressure, strain, and humidity with high sensitivity and reliability, and exhibit self-powered, self-healing, biodegradability, and other properties of the human skin. Furthermore, the typical applications of IFS in artificial skin, human-interactive technologies, wearable health monitors, and other related fields are reviewed. Finally, the perspectives on the current challenges and future directions of IFS are presented.
Ionic flexible sensors (IFS) usually consist of an ionomer matrix and two conductive electrodes, the failure of which mostly originates from interfacial debonding between matrix and electrode layers. To improve electrode's adhesion and impedance matching with matrix, polymer binder or plasmonic heating technology is used to enhance the adhesion of electrodes, but there are technical challenges such as high resistance and harsh conditions. Herein, inspired by biological hair, we proposed a reliable and facile method to form AgNWs@Au-embedded Nafion flexible electrodes (AN FEs) for IFS without rigorous temperature and harsh conditions. Through integrating the spraying and electrodepositing Au method, we achieved that the AgNWs are partly embedded in the matrix layer for forming the embedded layer, similar to the root of biological hair, which is used to fix the FEs and collect the ion charges. The other parts of AgNWs exposed on the surface form the conductive mesh layer for transmitting the signal, analogous to the tip of biological hair. Compared with other AgNWs FEs, AN FEs exhibit high adhesion (∼358 kPa) and low sheet resistance (∼ 3.7 Ω/□), and high stabilities after 100 washing cycles, 200 s H 2 O 2 corrosion or 1500s HCl corrosion. A self-powered IFS prepared by AN FEs can achieve dual sensing of mechanical strain and ambient humidity and still has promising sensing performance after being exposed to air for 2 months, which further indicates potential applications of the prepared FEs in next-generation multifunctional flexible electronic devices.
Flexible wearable devices have attracted wide attention in capacious fields because of their real-time and continuous monitoring of human information. The development of flexible sensors and corresponding integration with wearable devices is of great significance to build smart wearable devices. In this work, multi-walled carbon nanotube/polydimethylsiloxane-based (MWCNT/PDMS) resistive strain sensors and pressure sensors were developed to integrate a smart glove for human motion/perception detection. Firstly, MWCNT/PDMS conductive layers with excellent electrical and mechanical properties (resistivity of 2.897 KΩ · cm, elongation at break of 145%) were fabricated via a facile scraping-coating method. Then, a resistive strain sensor with a stable homogeneous structure was developed due to the similar physicochemical properties of the PDMS encapsulation layer and MWCNT/PDMS sensing layer. The resistance changes of the prepared strain sensor exhibited a great linear relationship with the strain. Moreover, it could output obvious repeatable dynamic response signals. It still had good cyclic stability and durability after 180° bending/restoring cycles and 40% stretching/releasing cycles. Secondly, MWCNT/PDMS layers with bioinspired spinous microstructures were formed by a simple sandpaper retransfer process and then assembled face-to-face into a resistive pressure sensor. The pressure sensor presented a linear relationship of relative resistance change and pressure in the range of 0–31.83 KPa with a sensitivity of 0.026 KPa−1, and a sensitivity of 2.769 × 10−4 KPa−1 over 32 KPa. Furthermore, it responded quickly and kept good cycle stability at 25.78 KPa dynamic loop over 2000 s. Finally, as parts of a wearable device, resistive strain sensors and a pressure sensor were then integrated into different areas of the glove. The cost-effective, multi-functional smart glove can recognize finger bending, gestures, and external mechanical stimuli, which holds great potential in the fields of medical healthcare, human-computer cooperation, and so on.
Ionic polymer–metal composites (IPMCs) have attracted attention in recent years due to their integration of actuation and sensing functions. As one of the main sensing functions of IPMCs, humidity sensing has been of consistent interest in wearable health monitors and artificial skin. However, there are still some technical challenges in that classical IPMCs have poor humidity sensing performance due to their dense surface electrode, and IPMCs are damaged easily due to an electrode/membrane mismatch. In this work, through the spraying and electrodepositing process, we developed an efficient method to rapidly prepare a Au-shell-Ag-NW (silver nanowire)-based IPMC with high strength, low surface resistance and excellent humidity sensing performance. Meanwhile, we optimized the preparation method by clarifying the influence of solvent type and electrodepositing time on the performance of the Au-shell-Ag-NW-based IPMC, thus effectively improving the humidity sensing effect and strength of the IPMC. Compared with previous research, the humidity electrical response (~9.6 mV) of the Au-shell-Ag-NW-based IPMC is at least two orders of magnitude higher than that of the classical IPMC (~0.41 mV), which is mainly attributed to the sparse gap structure for promoting the exchange of water molecules in the environment and Nafion membrane, a low surface resistance (~3.4 Ohm/sq) for transmitting the signal, and a seamless connection between the electrode and Nafion membrane for fully collecting the ion charges in the Nafion membrane. Additionally, the Au-shell-Ag-NW-based IPMC could effectively monitor the human breathing process, and the humidity sensing performance did not change after being exposed to the air for 4 weeks, which further indicates that the Au-shell-Ag-NW-based IPMC has good application potential due to its efficient preparation technology, high stability and good reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.