Objective: Repetitive transcranial magnetic stimulation (rTMS) has been widely used in non-invasive treatments for different neurological disorders. Few biomarkers are available for treatment response prediction. This study aims to analyze the correlation between changes in long-term potentiation (LTP)like cortical plasticity and cognitive function in patients with Alzheimer's disease (AD) that underwent rTMS treatment. Methods: A total of 75 AD patients were randomized into either 20 Hz rTMS treatment at the dorsolateral prefrontal cortex (DLPFC) group (n ¼ 37) or a sham treatment group (n ¼ 38) for 30 sessions over six weeks (five days per week) with a three-month follow-up. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment-Cognitive Component (ADAS-Cog). The cortical plasticity reflected by the motor-evoked potential (MEP) before and after high-frequency repetitive TMS to the primary motor cortex (M1) was also examined prior to and after the treatment period. Results: The results showed that the cognitive ability of patients who underwent the MMSE and ADAS-Cog assessments showed small but significant improvement after six weeks of rTMS treatment compared with the sham group. The cortical plasticity improvement correlated to the observed cognition change. Conclusions: Cortical LTP-like plasticity could predict the treatment responses of cognitive improvements in AD patients receiving rTMS intervention. This warrants future clinical trials using cortical LTP as a predictive marker.
Homocysteine is an essential intermediate product of biochemical reactions that is present in various tissues of the human body. Homocysteine may be associated with the development and progression of Parkinson's disease. Plasma homocysteine levels in patients with Parkinson's disease are elevated compared to those of healthy individuals. High homocysteine drives PD development and progression while aggregating the clinical symptoms of PD patients. The relationship between PD and homocysteine involves multiple pathways, including nerve cell apoptosis, oxidative stress, and DNA damage. This is crucial for explaining how high homocysteine drives the PD procession. Elevated homocysteine level during PD development and progression offers a new strategy for the diagnosis and treatment of this disease.
Objective: The 2019 novel coronavirus disease (COVID-19) broke out in Hubei Province and spread rapidly to the whole country, causing huge public health problems. College students are a special group, and there is no survey on insomnia among college students. The purpose of this study was to investigate the incidence and related factors of insomnia in college students during the period of COVID-19.Method: A total of 1,086 college students conducted a cross-sectional study through the questionnaire star platform. The survey time was from February 15 to February 22, 2020. The collected information included demographic informatics and mental health scale, Athens Insomnia Scale (AIS) to assess sleep quality, Self-Reporting Questionnaire-20 (SRQ-20) to assess general psychological symptoms, Chinese perceived stress scale (CPSS) to assess stress. We used logistic regression to analyze the correlation between related factors and insomnia symptoms.Results: The prevalence of insomnia, general psychological symptoms and stress were 16.67, 5.8, and 40.70%, respectively. Multivariate logistic regression analysis showed that gender (OR = 1.55, p = 0.044, 95% CI = 1.00–2.41), general psychological symptoms (OR = 1.49, p < 0.01, 95% CI = 1.40–1.60) and living in an isolation unit (OR = 2.21, p = 0.014, 95% CI = 1.17–4.16) were risk factors for insomnia of college students.Conclusion: Our results show that the insomnia is very common among college students during the outbreak of covid-19, and the related factors include gender, general psychological symptoms and isolation environment. It is necessary to intervene the insomnia of college students and warrants attention for mental well-being of college students.
Background: VGF (nonacronymic) is a neuropeptide that plays an important role in the pathogenesis of major depressive disorder (MDD). However, no studies have yet investigated VGF levels in patients with MDD who are at risk of suicide. The purpose of the present study was to determine whether serum VGF levels are related to suicide risk in patients with MMD. Methods: A total of 107 patients with MDD and 40 normal control participated in the present study. The risk of suicide was assessed using the Nurses Global Assessment of Suicide Risk (NGASR). On this basis, 60 patients were assigned to a high-risk group (NGASR≥9) and 47 were assigned to a low-risk group (NGASR< 9). The severity of depression was measured using the 17-item Hamilton Depression Rating Scale (HDRS). Levels of serum VGF were determined using a double antibody sandwich enzyme-linked immunosorbent assay. Results: Serum VGF levels in the high-risk group (883.34 ± 139.67 pg/mL) were significantly lower than in the lowrisk group (1020.56 ± 131.76 pg/mL) and in the control group (1107.00 ± 155.38 pg/mL) (F = 31.90, p < 0.001). In patients with MDD, suicide risk was significantly negatively correlated with VGF levels (r = − 0.55, p = 0.001). Conclusions: Reduced serum VGF levels are related to risk of suicide in patients with MDD, so VGF may be a biomarker of suicide risk in MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.