Antimicrobial peptides are typically with hydrophobic and cationic residues, which allow them to interact with microbial cell and induce cell death. In a previous study, we found the hydrophobic and...
Antimicrobial peptide (AMP) self-assembly is an effective way to synthesis antimicrobial biomaterials. In previous studies, we found PAF26 AMP (Ac-RKKWFW-NH2) and its derivative K2–F2 peptide (Ac-KKRKKWFWFF-NH2) could both self-assemble into hydrogels, but they had distinct microscopic structures. Therefore, in this work five PAF26 peptide derivatives with different numbers of aromatic amino acids are designed to better understand the self-assembly mechanism of aromatic AMP. The transmission electron microscopy, infrared spectroscopy, circular dichroism, and fluorescence spectroscopy characterizations are carried out to study the microscope structure, secondary conformation, and molecular interactions. It is found that the five peptide derivatives have different microscopic structures, and the number of aromatic amino acids will affect the peptide hydrogen bonding and aromatic stacking interactions, causing significant differences in the secondary conformation and microscopic structure. This work will enhance the comprehension of aromatic AMP self-assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.