Drebrin an actin-bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild-type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5-hydroxytryptamine receptor 1A (5-HT1 A R), and 5-hydroxytryptamine receptor 7 (5-HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel-based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory-related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory-related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.
Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT).Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase II␣ (␣CaMKII). Here, we show that not only DAT, but also SERT, is regulated by ␣CaMKII. Inhibition of ␣CaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and ␣CaMKII and brain tissue preparations. The interaction between SERT and ␣CaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of ␣CaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as "ecstasy") and blunted D-fenfluramine-induced prolactin release, substantiating the importance of ␣CaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in ␣CaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction.
The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.
The glutamate transporter 1 (GLT-1) is essential for glutamate uptake in the brain and associated with various psychiatric and neurological disorders. Pharmacological inhibition of GLT-1 results in memory deficits, but no study linking native GLT-1 complexes was published so far. It was therefore the aim of the study to associate this highly hydrophobic, eight transmembrane spanning domains containing transporter to memory training in the Multiple T-maze (MTM). C57BL/6J mice were used for the spatial memory training experiments, and trained mice were compared to untrained (yoked) animals. Mouse hippocampi were dissected out 6 h after training on day 4, and a total enriched membrane fraction was prepared by ultracentrifugation. Membrane proteins were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) with subsequent Western blotting against GLT-1 on these native gels. Moreover, GLT-1 complexes were identified by mass spectrometry (nano-LC-ESI-MS/MS). Animals learned the MTM task and multiple GLT-1 complexes were detected at apparent molecular weights of 242, 480 and 720 kDa on BN-PAGE Western blotting. GLT-1 complex levels were significantly higher in the trained group as compared to yoked controls, and antibody specificity was verified by immunoblotting on multidimensional gels. Hippocampal GLT-1 was unambiguously identified by mass spectrometry with high sequence coverage, and glycosylation was observed. It is revealed that increased GLT-1 complex levels are paralleling and are linked to spatial memory training. We provide evidence that signal termination, represented by the excitatory amino acid transporter GLT-1 complexes, is involved in spatial memory mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.