High‐frequency in‐situ measurements of a wide range of halogenated compounds including chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorinated compounds (PFCs), sulfur hexafluoride (SF6), and other chlorinated and brominated compounds have been made at Gosan (Jeju Island, Korea). Regional emissions of HCFC‐22 (CHClF2) calculated from inverse modeling were combined with interspecies correlation methods to estimate national emissions for China, a major emitter of industrial halogenated gases. Our results confirm the signs of successful phase‐out of primary ozone‐depleting species such as CFCs, halons and many chlorinated or brominated compounds, along with substantial emissions of replacement HCFCs. Emissions derived for HFCs, PFCs, and SF6 were compared to published estimates and found to be a significant fraction of global totals. Overall, Chinese emissions of the halogenated compounds discussed here represent 19(14–17)% and 20(15–26)% of global emissions when evaluated in terms of their Ozone Depletion Potentials and 100‐year Global Warming Potentials, respectively.
deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM 2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM 2.5 < 35 µg m-3). PM 2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM 2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM 2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM 2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM 2.5 is challenging to model, complicating quantification of contributions to PM 2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM 2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM 2.5 air quality.
The Korea–United States Air Quality (KORUS-AQ) field study was conducted during May–June 2016. The effort was jointly sponsored by the National Institute of Environmental Research of South Korea and the National Aeronautics and Space Administration of the United States. KORUS-AQ offered an unprecedented, multi-perspective view of air quality conditions in South Korea by employing observations from three aircraft, an extensive ground-based network, and three ships along with an array of air quality forecast models. Information gathered during the study is contributing to an improved understanding of the factors controlling air quality in South Korea. The study also provided a valuable test bed for future air quality–observing strategies involving geostationary satellite instruments being launched by both countries to examine air quality throughout the day over Asia and North America. This article presents details on the KORUS-AQ observational assets, study execution, data products, and air quality conditions observed during the study. High-level findings from companion papers in this special issue are also summarized and discussed in relation to the factors controlling fine particle and ozone pollution, current emissions and source apportionment, and expectations for the role of satellite observations in the future. Resulting policy recommendations and advice regarding plans going forward are summarized. These results provide an important update to early feedback previously provided in a Rapid Science Synthesis Report produced for South Korean policy makers in 2017 and form the basis for the Final Science Synthesis Report delivered in 2020.
, and 1.00 mg/m 3 , respectively. The simultaneous measurements of gaseous and aerosol species revealed that the composition of PM 2.5 was mainly determined by anthropogenic plumes from nearby lands. Most of pollution plumes were associated with the passage of cold frontal systems, when all major species were greatly enhanced. Of these, two episodes were followed by dust incidents. In general, EC and nss-SO 4 2À were well correlated with CO while OC was in good agreement with O 3 . Particularly, the variations of OC/EC ratios exhibited a maximum in the afternoon corresponding to the peak of O 3 /CO ratios, suggesting OC/EC as a marker representing the degree of chemical processing of fine aerosol. The ratios of OC/CO for all measurements fell between emission ratios of China and South Korea. For pollution episodes, the correlations of CO with nss-SO 4 2À and EC were significant and their relative enhancement was suggested as an indicator to distinguish different types of pollution plumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.