Cemented paste backfill (CPB) comprising mineral tailings, binders and mixing waters is an important potential support material in the mining industry. As the mechanical properties of CPB are significantly influenced by its microstructural characteristics the development of measurement tools to better understand its pore structure evolution is important for its increased utilisation. This study reports the application of low-field nuclear magnetic resonance (NMR) relaxation time measurements to characterise the microstructural evolution of CPB materials over 56 days of hydration, contrasting common tap water and hypersaline water (~22 wt% salt) as mixing waters. Distinct NMR relaxation time populations were evidenced within each CBP sample, revealing the presence of both capillary (T1,2 ≈ 10 ms) and gel pore water (T1,2 ≈ 300 – 500 µs), with time-dependent relaxation measurements facilitating characterisation of capillary pore structure evolution over the hydration period assessed. Hypersaline samples demonstrated a time-lag in this measured capillary pore evolution, relative to those hydrated with tap water, while hydration rates were observed to increase with increased CPB binder content. Further, both T1 and T2 NMR relaxation times were found to correlate with the uniaxial compressive strength of the CPB materials investigated, facilitating the formulation of a predictive correlation function between NMR relaxation characteristics and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.