Cyclononanes from the 7 low-energy conformational archetypal families (twist-boat[bond]chair, twist-chair[bond]boat, twist-chair[bond]chair, twist-chair[bond]twist-chair, skew-chair[bond]boat, skew-chair[bond]chair, and skew-boat[bond]boat) were transformed into 12 of 13 MM3 stochastically generated cis-cyclononenes. This was done by systematically converting single bond synclinal endocyclic torsion angles, one-at-a-time, into double-bond synperiplanar analogues, followed by geometry optimization [e.g. density functional theory B3LYP/6-31G(d)]. Torsion angles adjacent to the new double bond maintained their signs, while their magnitudes usually changed considerably to accommodate the new neighboring synperiplanar torsion angles. The six remaining torsion angles all maintained their signs and approximate magnitudes compared to corresponding values in the seven saturated parent structures. As a result, the same "twist"/"skew" conformational descriptors previously used for the saturated conformers can now also be applied to the corresponding unsaturated analogues. Three conformational families have multiple members (subtypes) in which the double bond is located at different positions on the same ring conformation. The solid-state structures of (+/-)-1-phenyl-1,3,4,5,6,7-hexahydro-2,6-benzoxazonine-6-carbonitrile (22) and (1RS,3SR)-1-phenyl-3-methyl-1,3,4,5,6,7-hexahydro-2,6-benzoxazonine-6-carbonitrile (23) were determined by single-crystal X-ray diffraction analysis. The asymmetric unit of the Ponemacr; unit cell for 22 contains two symmetry-unrelated molecules, both of which exhibit a skew-chair-boat (SCBtype-2) conformation identical to that found for crystalline 23. This subtype has yet to be found in the Cambridge Crystallographic DataBase. Crystal lattice packing considerations alone cannot explain the observation of the SCBtype-2 conformation since (1)H NMR spectroscopy shows the same conformational bias when the crystals are dissolved in CDCl(3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.