High-intensity focused ultrasound in combination with microbubbles (MBs) is able to inhibit the growth of VX2 rabbit liver tumors in vivo and prolong the survival time of the animals. In this study, we attempt to investigate the feasibility of VX2 tumor growth inhibition using low-frequency ultrasound (US)-mediated MB disruption. Forty-eight New Zealand rabbits with hepatic VX2 tumors were divided into four groups: control, MBs group, low-frequency US group, and US + MB group. The parameters of the US were 20 kHz, 2 W/cm², 40% duty cycle, 5 min, and once every other day for 2 weeks. At the end of the therapy experiment, 24 rabbits were euthanized, and the cancers were collected and cut into five sections for histological examination, immunohistochemistry, laser confocal microscopy, western blotting assays, and transmission electron microscopy (TEM). Another 24 rabbits were saved, and overall survival time was recorded. The tumor volumes in control, MB, US, and US + MB groups were 6.36 ± 0.58, 5.68 ± 0.42, 5.29 ± 0.26, and 2.04 ± 0.14 cm³, respectively (US + MB versus the other three groups, P < 0.01). Tumor cells manifested coagulation necrosis with internal calcification. Hematoxylin and eosin (H–E) staining revealed interstitial hemorrhage and intravascular thrombosis. The intensity of cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF) in the US + MB group in the immunohistochemical staining, laser confocal microscopy, and western blotting assays was lower than that of the other three groups (P < 0.05). TEM of the US + MB group revealed vascular endothelial cell wall rupture, widened endothelial cell gaps, interstitial erythrocyte leakage, and microvascular thrombosis, while intact vascular endothelial cells and normal erythrocytes in the tumor vessels were observed in control, MB, and US groups. Rabbits treated with US + MB had a significantly longer overall survival than those in the other three groups (χ2 = 9.328, P = 0.0242). VX2 tumor growth could be inhibited by cavitation induced using low-frequency US and MB.
DCE-MRI can be used to differentiate between benign and malignant SPNs and has the advantage of being radiation free.
Abstract. In vitro and in vivo studies have identified that low-frequency ultrasound (US) and microbubbles (MBs) mediate tumor inhibitory effects. However, the application of US in the clinical setting remains unclear. The aim of the present study was to investigate the clinically therapeutic effect of 20 kHz US in combination with MBs for the treatment of hepatic carcinoma. A 71-year-old male with a hepatic malignant tumor was admitted to Nantong University Affiliated Nantong Tumor Hospital (Nantong, China). The patient was subsequently sonicated with 20 kHz US and MBs over a period of five days. The low-frequency US parameters were set at 20 kHz, 2 W/cm 2 , duty cycle 40% (on 2 sec, off 3 sec) for a duration of 5 min each day for a total of five days. Computed tomography (CT), contrast-enhanced US (CEUS) and carbohydrate antigen 19-9 (CA19-9) tests were performed to evaluate the therapeutic effects. Although the tumor size increased marginally on CT from 5.4 to 5.6 cm after US treatment, the intensity and enhanced-areas on the CT scans and CEUS decreased. The abdominal lymph node decreased in size, from 2.2 to 1.9 cm, and CA19-9 levels decreased from the pretreatment value of 2,007 to 734 U/ml. Therapy with low-frequency US combined with MBs may exhibit an antivasculature effect and may be used as a palliative treatment for patients with unresectable hepatic malignant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.