In the present research, we aimed to produce polymer nanofibrous filters for antibacterial purification of air and water and prove their efficiency and stability under simulated filtration conditions. Polyurethane solutions were modified by microparticles (700 nm to 1 mm) and nanoparticles (z50 nm) of copper oxide (CuO) in order to compare the influence of the dimensional characteristics of modifier on the properties of composite filters. Antimicrobial additives (used concentrations 5; 7; 9.5 and 12%) were introduced directly into the pre-electrospinning solutions and then were thoroughly intermingled.The rheological behaviour of such solutions was studied before the electrospinning process. Then composite layers were prepared by the industrial Nanospider technique. SED-EDX results confirmed a smooth and well-oriented structure and the presence of CuO for all of the modified samples. The antibacterial efficiency of the nanofibrous mats with micro-and nanoparticles was studied using the model microorganisms Escherichia coli and Staphylococcus gallinarum. The stability of particle fixation into the fiber structure was determined under the simulated conditions of water filtration.Moreover, a special device AMFIT-13 was designed and used to characterize the bacterial filtration efficiency of nanofibers for air purification. A very important result of this research is a proven fact that microparticles of CuO are a more suitable additive for the selected method of antibacterial modification of polyurethane filters than nanoparticles from technological and economic points of view. Fig. 1 Schematic diagram of the Nanospider method.49178 | RSC Adv., 2017, 7, 49177-49187This journal is
The main aims of the research were to produce efficient nanofibrous filters with long-term antibacterial properties and to confirm the functionality of samples under real filtration conditions. A polyurethane solution was modified by micro- or nanoparticles of copper oxide in order to juxtapose the aggregation tendency of particles depending on their size. Modified solutions were electrospun by the Nanospider technique. The roller spinning electrode with a needle surface and static wire electrode were used for the production of functionalized nanofibers. The antibacterial properties of the modified nanofibrous layers were studied under simulated conditions of water and air filtration. Particular attention was paid to the fixation mechanism of modifiers in the structure of filters. It was determined that the rotating electrode with the needle surface is more efficient for the spinning of composite solutions due to the continuous mixing and the avoidance of particle precipitation at the bottom of the bath with modified polyurethane. Moreover, it was possible to state that microparticles of copper oxide are more appropriate antimicrobial additives due to their weaker aggregation tendency but stronger fixation in the fibrous structure than nanoparticles. From the results, it is possible to conclude that nanofibers with well-studied durable antibacterial properties may be recommended as excellent materials for water and air filtration applications.
This research describes the fabrication of nanofibrous materials for the air purification with high filtration efficiency and catalytic properties to clean the air from solid particles and emissions of automobile's transport. The polyurethane (PU) nanofibers were modified by particles of SnO 2 and CrO 2 in the ratio 95/5 to impart catalytic properties in the reaction with emission gases (CO, NOx).The modification process was provided by the introduction of metal's oxide's particles of different concentrations (1;2; 3; 4%) into the polymer solution. Reological properties and conductivity of the modified solutions were studied. The viscosity of solutions grew up gradually with increasing of SnO 2 /CrO 2 concentrations. Fiber's samples were produced from modified solutions by the electorstatic fiber forming using Nanospider technology. The morphology of produced fibers was analysed by the Scanning Electron Microscopy (SEM). SEM pictures confirmed the smoothness of fibrous layer. The diameters of fibres were measured with the help of Lucie 32G computer software. The obtained results demonstrated increasing of average diameters of nanofibers for the concentration 1and 2% of catalysts in comparison with the pure PU samples. But fibers with 3 and 4% of SnO 2 /CrO 2 particles showed the decreasing of average fiber diameters. The presence of catalyst on the nanofiber`s surface was proved by the method of Energy Dispersive Spectroscopy (EDS). The catalytic properties of produced nanolayers in the reaction with emission's gases were studied with the measurement setup consisting from the engine, a system of analyzers and UV lamp as a sourse of energy to activate the catalyst. All samples demonstrated good catalytic efficiency. The best result showed the sample of PU nanofibers with 3% of SnO 2 /CrO: the concentrations of CO and NOx reduced by 81% and 73% respectively. Produced samples are the promising materials for air-conditioning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.