BackgroundHuddling is highly evolved as a cooperative behavioral strategy for social mammals to maximize their fitness in harsh environments. Huddling behavior can change psychological and physiological responses. The coevolution of mammals with their microbial communities confers fitness benefits to both partners. The gut microbiome is a key regulator of host immune and metabolic functions. We hypothesized that huddling behavior altered energetics and thermoregulation by shaping caecal microbiota in small herbivores. Brandt’s voles (Lasiopodomys brandtii) were maintained in a group (huddling) or as individuals (separated) and were exposed to warm (23 ± 1 °C) and cold (4 ± 1 °C) air temperatures (Ta).ResultsVoles exposed to cold Ta had higher energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST) than voles exposed to warm Ta. Huddling voles had lower RMR and NST than separated voles in cold. In addition, huddling voles had a higher surface body temperature (Tsurface), but lower core body temperature (Tcore) than separated voles, suggesting a lower set-point of Tcore in huddling voles. Both cold and huddling induced a marked variation in caecal bacterial composition, which was associated with the lower Tcore. Huddling voles had a higher α and β-diversity, abundance of Lachnospiraceae and Veillonellaceae, but lower abundance of Cyanobacteria, Tenericutes, TM7, Comamonadaceae, and Sinobacteraceae than separated voles. Huddling or cold resulted in higher concentrations of short-chain fatty acids (SCFAs), particularly acetic acid and butyric acid when compared to their counterparts. Transplantation of caecal microbiota from cold-separated voles but not from cold-huddling voles induced significant increases in energy intake and RMR compared to that from warm-separated voles.ConclusionsThese findings demonstrate that the remodeling of gut microbiota, which is associated with a reduction in host Tcore, mediates cold- and huddling-induced energy intake and thermoregulation and therefore orchestrates host metabolic and thermal homeostasis. It highlights the coevolutionary mechanism of host huddling and gut microbiota in thermoregulation and energy saving for winter survival in endotherms.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0473-9) contains supplementary material, which is available to authorized users.
Huddling as social thermoregulatory behavior is commonly used by small mammals to reduce heat loss and energy expenditure in the cold. Our study aimed to determine the effect of huddling behavior on energy conservation, thermogenesis, core body temperature (Tb) regulation and body composition in Brandt's voles (Lasiopodomys brandtii). Adult captive-bred female Brandt's voles (n = 124) (~50 g) in 31 cages with 4 individuals each were exposed to cool (23 ± 1°C) and cold (4 ± 1°C) ambient temperatures (Ta) and were allowed to huddle or were physically separated. The cold huddling (Cold-H) groups significantly reduced food intake by 29% and saved digestible energy 156.99 kJ/day compared with cold separated groups (Cold-S); in cool huddling groups (Cool-H) the reduction in food intake was 26% and digestible energy was saved by 105.19 kJ/day in comparison to the separated groups (Cool-S). Resting metabolic rate (RMR) of huddling groups was 35.7 and 37.2% lower than in separated groups at cold and cool Tas, respectively. Maximum non-shivering thermogenesis (NSTmax) of huddling voles was not affected by Ta, but in Cold-S voles it was significantly increased in comparison to Cool-S. Huddling groups decreased wet thermal conductance by 39% compared with separated groups in the cold, but not in the cool Ta. Unexpectedly, huddling voles significantly decreased Tb by 0.25 – 0.50°C at each Ta. Nevertheless, activity of Cold-H voles was higher than in Cold-S voles. Thus, huddling is energetically highly effective because of reduced metabolic rate, thermogenic capacity and relaxed Tb regulation despite the increase of activity. Therefore, Brandt's voles can remain active and maintain their body condition without increased energetic costs during cold exposure. This study highlights the ecological significance of huddling behavior for maintenance of individual fitness at low costs, and thus survival of population during severe winter in small mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.