In this study, we investigated the sliding mode control (SMC) for the spacecraft rendezvous maneuver under unknown system parameters and input saturations. On the basis of the attitude and position tracking subsystem, two anti-saturation sliding mode surfaces (SMSs) are constructed to guarantee the exponential convergence of tracking errors between the target spacecraft and the pursuer spacecraft. In connection with hyperbolic tangent, a modified auxiliary system is established to compensate the nonlinear constraint caused by the actuator saturation. Meanwhile, in order to enhance the practicability and reliability of the controller, unknown inertial information is taken into consideration. The resulting system uncertainties are estimated accurately via adaptive laws. Additionally, it is concluded that the designed controller is capable of ensuring the boundedness of the closed-loop signals with reasonable selection of control parameters. Finally, the effectiveness and advantages of the proposed methods are verified through numerical simulations.INDEX TERMS spacecraft rendezvous maneuver; asymptotic tracking control; sliding mode control; input saturation; adaptive control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.