Total Variation (TV) is an effective and popular prior model in the field of regularization-based image processing. This paper focuses on total variation for removing impulse noise in image restoration. This type of noise frequently arises in data acquisition and transmission due to many reasons, e.g. a faulty sensor or analog-to-digital converter errors. Removing this noise is an important task in image restoration. State-of-the-art methods such as Adaptive Outlier Pursuit(AOP), which is based on TV with -norm data fidelity, only give sub-optimal performance. In this paper, we propose a new sparse optimization method, called TV-PADMM, which solves the TV-based restoration problem with -norm data fidelity. To effectively deal with the resulting non-convex non-smooth optimization problem, we first reformulate it as an equivalent biconvex Mathematical Program with Equilibrium Constraints (MPEC), and then solve it using a proximal Alternating Direction Method of Multipliers (PADMM). Our TV-PADMM method finds a desirable solution to the original -norm optimization problem and is proven to be convergent under mild conditions. We apply TV-PADMM to the problems of image denoising and deblurring in the presence of impulse noise. Our extensive experiments demonstrate that TV-PADMM outperforms state-of-the-art image restoration methods.
Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate strategy, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-linear and non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem.This paper points out that under (ǫ, δ)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.
Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results while satisfying the privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., -) and approximate (i.e., ( , δ)-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how to set the privacy parameters, given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.