The application of fin-and-tube heat exchangers with small diameter microgroove tubes in room air conditioners has rapidly increased recently, and fins suitable for such heat exchangers should be developed. In the present study, a louver fin suitable for the evaporator with small diameter microgroove tubes was designed by applying computational fluid dynamics method, and the performance of the optimized and existing louver fins were experimentally investigated. Experimental results show that water bridge occurs at the bottom of the optimized fins for small diameter tubes, which is not the same as that for larger diameter tubes; for the fins of the evaporator with small diameter tubes, the increase of the fin pitch leads to the decrease of Colburn j factors. Based on the experimental data, a correlation of the Colburn j factor was developed to predict the heat transfer rate of the evaporator with small diameter microgroove tubes, and agrees with 85% of the experimental data within a deviation of ±20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.