A large quantity of polysaccharide-derived conjugate vaccines have been developed to combat various pathogenic infections. Another prominent polysaccharide, heparin, is listed as an essential drug by the World Health Organization (WHO) to treat thrombus. One of their common problems is that they all derive from natural polysaccharides. Specifically, capsular polysaccharides are mainly obtained from bacterial fermentation and unfractionated heparin is extracted from animal tissues such as porcine mucosa. The quality of natural polysaccharides is inconsistent and traces of contamination would cause a disaster. By contrast, the use of chemical or chemoenzymatic methods could provide structurally homogeneous and quality-controlled glycans. To date, large numbers of polysaccharide fragments and their analogues have been synthesized and evaluated. Some of them even showed comparable activities to their corresponding natural polysaccharides. Here, the latest advances in these synthetic glycan analogues ranging from carbohydrate-based vaccines, heparin-related therapeutics and glycomimetics of polysaccharides are summarized.
The penta- to octa-saccharide fragments of Vi polysaccharide were synthesized efficiently, and the hexasaccharide might be the minimum epitope of Vi antigen based on ELISA analysis.
Salmonella typhi is responsible for typhoid fever, which is a serious health threat in developing countries. As a virulent factor of Salmonella typhi, the purified Vi polysaccharide (Vi PS) has become an effective vaccine to combat typhoid fever. The chemical synthesis can provide homogeneous and well-defined molecules for the development of Vi-based vaccines. However, the synthesis of Vi oligosaccharides in high yields and with exclusive α-stereoselectivities remains very challenging. In this paper, a series of Vi pseudooligosaccharides, including pseudo tetra-, hexa-, and octa-saccharides were efficiently synthesized. These oligosaccharide analogues were conjugated by carbon chain tether through olefin cross metathesis or by the 1,2,3-triazole moiety through copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). The binding affinities of these oligosaccharide mimics to anti-Vi antibodies were investigated. These results will be beneficial to the further development of Vi-based oligosaccharide vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.