With the improvement in the integration of solar power generation, photovoltaic (PV) power forecasting plays a significant role in ensuring the operation security and stability of power grids. At present, the widely used backpropagation (BP) and improved BP neural network algorithm in short-term output prediction of PV power stations own the drawbacks of neglection of meteorological factors and weather conditions in inputs. Meanwhile, the existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. Therefore, based on the PV power plant in Lijiang, considering the related factors that influence PV output such as solar irradiance, environmental temperature, atmospheric pressure, wind velocity, wind direction, and historical generation data of the PV power station, three neural network algorithms (i.e., BP, GA-BP, and PSO-BP) are utilized respectively in this work to construct a short-term forecasting model of PV output. Simulation results show that GA-BP and PSO-BP network forecasting models both obtain high prediction accuracy, which indicates GA and PSO methods can effectively reduce the prediction errors in contrast to the original BP model. In particular, PSO owns better applicability than GA, which can further reduce the errors of the PV power prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.