Abstract. Predicting the agin life of rubber is mostly based on traditional dynamic methods. These methods often have some limitations, which can not reflect the influence of certain factors. To avoid such limitations, a BP neural network model was established to predict the aging life of rubber. Comparing with the BP neural network model, results from the genetic algorithm optimization model (GA-BP) and the particle swarm optimization model (PSO-BP) showed that the GA-BP network model has better stability and accuracy and can quickly get the global optimal solution. The prediction accuracy of the GA-BP neural network model is better than that of the traditional dynamic model and its result is in good agreement with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.