The elastic strain of wood reflects the nature (stretching or compression) and the magnitude of the drying stress at that time during the conventional drying process. The accurate prediction of strain is important to optimize the drying process and to improve drying speed and quality. In this work, the elastic strain was measured in real time, and moisture content was measured by periodic weighing during the drying process. Using these data, the GM (1,1) grey prediction model was used to predict moisture content in adjacent periods in the future. Based on the moisture content predicted by GM (1,1), a BP neural network was constructed to predict the development trend of elastic strain in the surface layer and core layer. The prediction results of the GM-BP combination model showed that the fitting error range of the prediction of the surface layer elastic strain was [-5×10-3~5×10-3], with a mean square error (MSE) of 2.31×10-7. The elastic strain of the core layer was [-2×10-3~2×10-3], and the MSE was 3.86×10-8. Thus, the GM-BP model achieved high accuracy for predicting the development trend of elastic strain. It can provide a new method and innovative thinking for the optimization and control of wood drying process.
The relationships between free shrinkage and actual shrinkage of different layers in Mongolian Scotch pine (Pinus sylvestris var. mongolica Litv.) were explored to provide basic data for the further study of drying shrinkage properties. The free shrinkage coefficients at different temperatures and the actual shrinkage strain of each layer were examined under conventional drying. The results showed high precision of free drying shrinkage of corresponding layers of thin small test strips in each layer of sawn timber. The free shrinkage increased linearly as moisture content declined. At the same temperature, the free shrinkage coefficient reached the largest values for the first layer (above 0.267%), while the smallest values were recorded for the ninth layer (below 0.249%). Except for the ninth layer, the free shrinkage coefficients in width directions of other representative layers decreased as temperature increased. At constant temperature, the difference in free shrinkage coefficient of test materials in the length direction of sawn timber was small for the first layer, but slightly larger and changed irregularly in the fifth and ninth layer direction. At the end of conventional drying, the plastic deformation of each layer in the early stage of drying showed a reducing trend or even reversal due to the effects of reverse stress and later damp heat. In sum, these findings look promising for future optimization of wood drying process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.