Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.
Based on a Marx generator and a coaxial pulse forming line, an experimental investigation of surface flashover characteristics in vacuum is conducted by using nanosecond pulses of 10 ns rise time and 30 ns full width at half maximum (FWHM). Insulator dielectrics chosen for this investigation are Teflon, PMMA and Nylon. The tested factors include gas pressure, cone angle of conical frustum, diameter and length of cylindrical insulator, material and shape of electrode, and contact style between insulator and electrodes. The effects of these parameters on the surface flashover characteristics are described and analyzed in this paper. In addition, the character of flashover time lag in the nanosecond range, and surface flashover theory in vacuum charged by nanosecond pulses are also discussed.Index Terms -Surface flashover, vacuum, nanosecond pulse, cathode triple junction, electron emission.
Ping Yan
An all-fiber optical heterodyne detection configuration was proposed based on an all-fiber acousto-optic structure, which acted as both frequency shifter and coupler at the same time. The vibration waveform within a frequency range between 1 Hz to 200 kHz of a piezoelectric mirror was measured using this optical heterodyne detection system. The minimal measurable vibration amplitude and resolution are around 6 pm and 1 pm in the region of tens to hundreds of kilohertz, respectively. The configuration has advantages of compact size, high accuracy and non-contact measurement. Moreover, it is of a dynamically adjustable signal-to-noise ratio to adapt different surface with different reflections in the measurement, which will improve the usage efficiency of the light power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.