Unmanned ground vehicles (UGVs) have been widely used in security patrol. The existence of two potential opponents, the malicious teammate (cooperative) and the hostile observer (adversarial), highlights the importance of privacy-preserving planning under contested environments. In a cooperative setting, the disclosure of private information can be restricted to the malicious teammates. In adversarial setting, obfuscation can be added to control the observability of the adversarial observer. In this paper, we attempt to generate opponent-aware privacy-preserving plans, mainly focusing on two questions: what is opponent-aware privacy-preserving planning, and, how can we generate opponent-aware privacy-preserving plans? We first define the opponent-aware privacy-preserving planning problem, where the generated plans preserve admissible privacy. Then, we demonstrate how to generate opponent-aware privacy-preserving plans. The search-based planning algorithms were restricted to public information shared among the cooperators. The observation of the adversarial observer could be purposefully controlled by exploiting decoy goals and diverse paths. Finally, we model the security patrol problem, where the UGV restricts information sharing and attempts to obfuscate the goal. The simulation experiments with privacy leakage analysis and an indoor robot demonstration show the applicability of our proposed approaches.
Goal recognition (GR) is a method of inferring the goals of other agents, which enables humans or AI agents to proactively make response plans. Goal recognition design (GRD) has been proposed to deliberately redesign the underlying environment to accelerate goal recognition. Along with the GR and GRD problems, in this paper, we start by introducing the goal recognition control (GRC) problem under network interdiction, which focuses on controlling the goal recognition process. When the observer attempts to facilitate the explainability of the actor’s behavior and accelerate goal recognition by reducing the uncertainty, the actor wants to minimize the privacy information leakage by manipulating the asymmetric information and delay the goal recognition process. Then, the GRC under network interdiction is formulated as one static Stackelberg game, where the observer obtains asymmetric information about the actor’s intended goal and proactively interdicts the edges of the network with a bounded resource. The privacy leakage of the actor’s actions about the real goals is quantified by a min-entropy information metric and this privacy information metric is associated with the goal uncertainty. Next in importance, we define the privacy information metric based GRC under network interdiction (InfoGRC) and the information metric based GRC under threshold network interdiction (InfoGRCT). After dual reformulating, the InfoGRC and InfoGRCT as bi-level mixed-integer programming problems, one Benders decomposition-based approach is adopted to optimize the observer’s optimal interdiction resource allocation and the actor’s cost-optimal path-planning. Finally, some experimental evaluations are conducted to demonstrate the effectiveness of the InfoGRC and InfoGRCT models in the task of controlling the goal recognition process.
In information retrieval and other computer applications, ontology acts as an effective role to retrieve the concepts that have highly semantic similarity with the original query concept, and return the results to the user. Ontology mapping is used to connect the relationship between different ontologies, and similarity computation is the essence of such applications. In this article, we present a new ontology sparse vector scheming for ontology similarity measure and ontology mapping in terms of general fusion lasso. The solution of ontology optimization problem is obtained via learning its Lagrangian version. The implementation procedure is based on gradient computating and fusion step, and the parameters in the ontology framework are chosen by means of cross-vaildation and bayesian information criterion. The simulation experiment results show that the newly proposed method has high efficiency and accuracy in ontology similarity measure and ontology mapping in multiple disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.