This work aimed to investigate miR-93-5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand-1 (PD-L1). MiR-93-5p and PD-L1 expression was detected in CRC and adjacent normal tissues by quantitative real-time polymerase chain reaction and immunohistochemistry. The correlation between miR-93-5p and PD-L1 was validated by a dual-luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR-NC, miR-93-5p mimics, miR-93-5p inhibitor, PD-L1 small interfering RNA (siRNA) and miR-93-5p inhibitor + PD-L1 siRNA groups, and wound-healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR-93-5p was downregulated in CRC tissues with upregulated PD-L1. In PD-L1-negative patients, miR-93-5p expression was increased compared with that in PD-L1-positive patients. MiR-93-5p and PD-L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD-L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase-1 (MMP-1), -2, and -9, and these effects were abolished by the miR-93-5p inhibitor. Additionally, anti-PD-L1 upregulated the expressions of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon γ (IFN-γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL-1β, IL-10, and TGF-β. However, these changes were partially reversed by miR-93-5p inhibition. miR-93-5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD-L1. Abbreviations: CRC, colorectal cancer; ELISA, enzyme-linked immunosorbent assay; HE, hematoxylin and eosin; ITIM, immunoreceptor tyrosinebased inhibitory motif; miRNA, microRNA; PD-L1, programmed death ligand-1 Role of miR-93-5p in CRC via targeting PD-L1Y.-L. Chen et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.