(Fe83Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fe83Ga17 alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s·cm−1 and 182 s·cm−1 are detected in the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.