A new type of semi-IPN gel electrolyte was prepared by thermal polymerization in this article. At first, the crosslinkable PEG200 (MXPEG) was prepared by condensation reaction, then the crosslinkable components were blent with PMMA and heated under vacuum to form polymer blends with semi-IPN fabric. Differential scanning calorimetry and X-ray diffraction spectroscopy were used to investigate the thermal properties and crystalline/amorphous structure of the prepared polymer blends. With semi-IPN fabric, they present amorphous absolutely. For semi-IPN gel electrolyte, the mechanical and the electrochemical properties are varied with the quantity of absorbed liquid electrolyte. Ion-conductivity behavior for semi-IPN gel electrolyte measured by means of AC impedance spectrum showed that the best data was 1.62 Â 10 À3 S cm À1 at room temperature, and Arrhenius-type relationship was obeyed in the temperature dependence of ionic conductivity. In addition, the electrochemical stability window of the semi-IPN gel electrolyte was 4.6 V. All the properties showed that the prepared semi-IPN gel electrolyte was expected to have applications of electrolyte for lithium-ion polymer secondary batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.