Abstract. We establish a number of characterizations and inequalities for intersection bodies, polar projection bodies and curvature images of projection bodies in R" by using dual mixed volumes. One of the inequalities is between the dual Quermassintegrals of centered bodies and the dual Quermassintegrals of their central (n -l)-slices. It implies Lutwak's affirmative answer to the Busemann-Petty problem when the body with the smaller sections is an intersection body. We introduce and study the intersection body of order i of a star body, which is dual to the projection body of order i of a convex body. We show that every sufficiently smooth centered body is a generalized intersection body. We discuss a type of selfadjoint elliptic differential operator associated with a convex body. These operators give the openness property of the class of curvature functions of convex bodies. They also give an existence theorem related to a well-known uniqueness theorem about deformations of convex hypersurfaces in global differential geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.