A recommender system is an important tool to help users obtain content and overcome information overload. It can predict users’ interests and offer recommendations by analyzing their history behaviors. However, traditional recommender systems focus primarily on static user behavior analysis. Recently, with the promotion of the Netflix recommendation prize and the open dataset with location and time information, many researchers have focused on the dynamic characteristics of the recommender system (including the changes in the dynamic model of user interest), and begun to offer recommendations based on these dynamic features. Intuitively, these dynamic user features provide us with an effective method to learn user interests deeply. Based on the observations above, we present a dynamic fusion model by integrating geographical location, user preferences, and the time factor based on the Gibbs sampling process to provide better recommendations. To evaluate the performance of our proposed method, we conducted experiments on real-world datasets. The experimental results indicate that our proposed dynamic recommender system with fused time and location factors not only performs well in traditional scenarios, but also in sparsity situations where users appear at the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.