The aim of this study was to evaluate the correlation between lymphovascular invasion (LVI) and tumor size, histological grade, and the expression statuses of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), Ki67, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), E-cadherin, and P53 in invasive breast cancer, then establish a prediction model of LVI based on the associated clinicopathological factors.A total of 392 patients with primary invasive breast cancers were enrolled, and their paraffin-embedded tissues were manufactured into the tissue microarray. We evaluated the expression statuses of ER, PR, HER-2, Ki67, EGFR, VEGF, E-cadherin, and P53 based on immunohistochemistry, histological grade and LVI based on the hematoxylin and eosin stain, and tumor size.The positivity of LVI was significantly higher in the patients with HER-2 positive expression, Ki67 high expression, and tumor size >2 cm by Chi-square test. HER-2, Ki67, and tumor size were risk factors of LVI by multivariate analysis. The areas under the receiver operating curve of HER-2, Ki67, tumor size, and the combination of the 3 clinicopathological factors were 0.614 [P = .001, 95% confidence interval (CI): 0.544–0.683], 0.596 (P = .006, 95% CI: 0.529–0.662), 0.575 (P = .03, 95% CI: 0.510–0.641), and 0.670 (P < .001, 95% CI: 0.607–0.734), respectively.HER-2 positive expression, Ki67 high expression, and tumor size >2 cm were risk factors of LVI, whereas the power of the prediction model of LVI based on the 3 clinicopathological factors in invasive breast cancer was low.
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5.
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.
This study aimed to evaluate correlations between lymphovascular invasion (LVI) and the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), Ki-67, CK5/6, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), E-cadherin, BCL11A and P53 in invasive breast cancer and to identify predictors of LVI based on these pathological factors. In all, 392 paraffin-embedded tissues from consecutive patients with primary operable invasive breast cancer were included. Immunohistochemistry (IHC) was retrospectively performed using a tissue microarray (TMA) of the paraffin-embedded tissues. LVI-positive rates were compared using the χ2 test. Correlations between pathological factors were assessed using Spearman's test. Binary logistic regression was employed in multivariate analyses of statistically significant factors. The results showed that LVI positivity was significantly higher in patients with HER-2-positive expression or high Ki-67 expression. HER-2 expression was weakly positively correlated with Ki-67 expression. HER-2-positive expression and high Ki-67 expression were found to be risk factors for LVI, and associations between LVI and other pathological factors were not significant. Therefore, HER-2-positive expression and high Ki-67 expression are predictors of LVI, whereas the expression of ER, PR, CK5/6, EGFR, VEGF, E-cadherin, BCL11A and P53 is not associated with LVI in invasive breast cancer.
The aim of this study was to determine the relationship between parity and age at diagnosis, primary tumor size, axillary lymph node (ALN) metastasis, histological grade, and subtype classification in patients with breast cancer. Data from 392 patients with invasive breast cancer were collected and divided into four groups: nulliparous (parity 0), parity 1, parity 2, and parity ≥3. The relationship between parity and age at diagnosis was assessed using post hoc Dunnett’s T3 test, and tumor size, the number of ALN metastases, and histological grade were analyzed using Spearman’s rho test. Breast cancer subtypes were analyzed using the chi-square (χ2) test. The results showed that the mean age at diagnosis increased with increased parity, and the mean age of patients with parity ≥3 was significantly greater than that of patients with parity 0, parity 1, and parity 2. The mean age at diagnosis of patients with parity 2 was greater than that of patients with parity 1. There was no significant difference in the mean age between patients with parity 0 and parity 1 or parity 0 and parity 2. Parity was negatively correlated with ALN metastasis. Parity was not correlated with tumor size or histological grade and the proportion of the four subtypes in breast cancer. So, increased parity deferred the onset of breast cancer and inhibited the metastasis of ALN, but did not affect tumor size, histological grade, or the proportion of subtypes. Increased parity was a protective factor against breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.